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Deep Inelastic Scattering
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HERA: Ee = 27:6 GeV, Ep = 820 GeV ) p
s ' 300 GeV

probe proton at very short distances via

t-channel exchange of virtual gauge boson

{ measurement of proton Structure

{ Test of pQCD up to very high Q
2

{ Test of EW Standard Model

total luminosity for e+p data 37 pb�1

� In situ Energy Calibration

� Update of High Q2 Results (DESY-97-24)

� Neutral Current cross sections at High Q2

� Charged Current cross sections at High Q2



H1 detector

Q2
= 16950 GeV

2; y = 0:44; M = 196 GeV
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Liquid Argon Calorimeter: 45000 cells

EM section

�(E)=E = 12%=
p
E � 1%

syst. Unc.: 1� 3%

HAD section

�(E)=E = 50%=
p
E � 1%

syst. Unc.: 3� 4%

Observables in NC events:

Ee and �e of the electron

� = E � pz and Pt;h of the hadrons

=) various possibilities for reconstruction of

kinematics with di�erent systematics



Kinematic Reconstruction

Methods used for Measurements:

� Electron Method: ye = 1� E0

e

Ee
sin2 �e

2
Q
2
e = 4E0

eEecos
2 �e
2

{ most precise at high y / low x

{ bad x resolution at low y

{ good Q
2 resolution in full range

� Hadron Method: yh =
�

2Ee
Q
2
h =

p2t;h
1�yh

{ low precision, but only method for charged current

� e� Method: xe� = x� and Q
2
e� = Q

2
e

{ precise over the whole kinematic range

{ good resolution even at very high x

Further Methods for Calibration and Cross Checks

� � Method:

{ good x resolution also at low y

{ independent of QED initial state radiation

� Double Angle Method:

{ angle of scattered electron and hadronic �nal state

{ high precision at high Q
2, but sensitive to QED radiation

{ independent of energy scale ) used for calibration

� ! Method:

{ identi�cation/correction of radiative events

{ determination of kinematics/calibration on an event by event basis



Electron Energy Calibration

� Detailed calibration performed in backward part
of LAr calorimeter � > 80o:

{ at low y < 0:3 using the Double Angle method
(independent of electron energy) as reference

{ EDA =
2Ee;beam sin 


sin 
+sin �e�sin(
+�e)

{ cm-wise in z and octant by octant in �
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� reduction of energy scale uncertainty to < 1%



Electron Energy Calibration

Improvement of the electron energy calibration using di�erent types of

events

� NC DIS events (DA-method and !-method)

� elastic QED Compton and e
+
p! e

+
e
�
e
+
p
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LAr regions: forward to backward
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� e-calib. well within originally quoted �3% syst. for central LAr wheels

) 1% precision for � between 80� to 150� (Q2
< 1000 GeV2)

� In the forward LAr wheels (Q2
> 2500 GeV2):

consistency from various methods using NC DIS and QED

) calibration scale improved.

Uncertainty at the 3% precision level only limited by statistics



Hadronic Energies
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� hadronic scale is being precisely calibrated using the
Pt balance of the hadrons and the electron in NC events as
reference

� width and scale of the hadronic distributions
well described at low and high Pt



Pt balance vs. Q
2
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� reduction of systematic error on hadronic energy scale
4! 3% in forward region (
 < 60o)

� mean of Pt balance well described

� resolution ' 20% in Pt =) Q2 resolution ' 30%



Update on Very High Q2 results
with 97 data

� New Ee calibration
� Slightly modi�ed selection cuts
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accumulation of events in mass window is not con�rmed by

the 97 data (details ! M.-C. Cousinou)



Q
2 Dependence
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� Slight deviations from SM expectation observed
for Q2

e
>
�
15000GeV2

� Excess at highest Q2
e less signi�cant than with

1994!96 data only



Cross Sections for e+p! e
+
X at High Q2

Kinematic Domain: 200 GeV2 � Q2 � 30000 GeV2

0.005 � x � 0.65

d2�

dx dQ2 =
2��2

xQ4 [Y+F2(x;Q
2)� y2F

L
(x;Q2)� Y

�

xF3(x;Q
2)]

Y�(y) = 1� (1� y)2

F2: generalized structure function

F
L
: longitudinal structure function

F3: parity violating term from Z
� exchange

F2 = F em
2 +

Q2

(Q2
+M2

Z
)
F int
2 + Q4

(Q2
+M2

Z
)2
Fwk
2 = F em

2 (1 + �Z)

F
em
2 : photon exchange

F
wk
2 : Z� exchange

F
int
2 : 
Z� interference

� contributions from Z exchange and 
Z interference terms

only for Q2 > 1500 GeV2 at high y (low x)

� small in
uence of FL < 5% at highest y values

In the following we will use the Reduced Cross Section:

�(e+p) � xQ
4

2��2
1
Y+

d2�
dxdQ2



Neutral Current measurement at High Q2

Event Selection of High Q2 events:
{ Calorimetric based trigger (� > 99:5%)

{ Ee > 11 GeV ye < 0.9 �e � 150�

{ j zvertex j< 35 cm

{ E-Pz > 35 GeV

) Data sample ' 75000 events

) Background < 1%

extension of phase space to higher Q2 and higher x
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Sample of NC events
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� Polar angle well described over the full Q2 range

(�� ' 3mrad)

� Energy spectrum under control in high Q
2 (� ' 3%) and

low Q
2 (� ' 1%) region



Systematic Uncertainties for NC measurement

� main error sources

{ Trigger e�ciency �0:5%
{ Electron �nding e�ciency �1%
{ e

+ Track validation �1%
{ Electron Energy scale �1� 3%

{ e
+ scattering angle �3 mrad

{ Hadronic Energy scale �4%
{ Noise suppression �25%
{ Photoproduction background �30%
{ radiative corrections �2%

� no single error source dominates at low Q2
� 400 GeV2

� precision still limited statistical error for Q2 > 1000 GeV2



Comparison of e and � Method
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� Opposite systematic shift for electron energy
error ) energy calibration check

� Di�erent behaviour for radiative corrections

� For �nal result we use the e�-method (x�,Q
2
e)

which has a good stability in the full kinematic
plane (cf DESY-97-137).



Reduced Cross Section
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� Measurement from Q2 = 200 to 30000 GeV2.
Up to x = 0:65 for Q2

� 650 GeV2

� NLO QCD �t gives good description of the data
in the whole Q2 and x range (details E. Rizvi)



Reduced Cross-section at High x
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� approaching overlap with �xed target data at
high x

� cross section falls at high x (scaling violation)

� high Q2 HERA data now also have an in
uence
at high x.



Single Di�erential Cross-Sections
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� Neutral Current cross section falls by seven orders of

magnitude in measured region

� High Q
2 data are compatible with a NLO QCD �t to all

low Q
2 data (� 120GeV2) evolved over two orders of

magnitude.

� Slight Excess visible at Q2 � 15000 GeV2.



Sensitivity To Z0 Contribution

0

0.2

0.4

Q2=3000 GeV2

σ

Q2=5000 GeV2

0

0.2

0.4

Q2=8000 GeV2 Q2=12000 GeV2

0

0.2

0.4

10
-1

Q2=20000 GeV2

x 10
-1

Q2=30000 GeV2

x

H1 Preliminary

γ + Z0

γ  only

� Cross section reduced due to 
Z interference at
low x (high y)

� E�ects are visible at Q2
�10000 GeV2

� Greater sensitivity can be gained from single
di�erential distributions



d�=dx at Q2
> 1000; 10000 GeV2
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� For Q2
� 1000 GeV2, the cross-section is

still dominated by low x partons.

� For Q2
� 10000 GeV2 the valence quarks contribute.

� The data are in good agreement with the electroweak
Standard Model.



Charged Current Deep Inelastic Scattering

Cross Section for e+p �! ��X :

d
2
�

dxdQ2
=

G
2
F

2�

1

(1 +Q2=m2
W
)2

�
�u+ �c+ (1� y)2(d + s)

�

� Propagator ) W mass determination
(94: 85+9+5

�6�4 GeV)

� parton densities ) sensitivity to d-quark density

� helicity dependence ) V-A coupling

Radiative Corrections (< 10%) depend on MW )
Measure radiative Cross Section

We de�ne the

Reduced Charged Current Cross Section:

�CC � x �
2�

G2
F

(1 +Q2=m2
W )2

d2�

dxdQ2

= x � (�u+ �c + (1� y)2(d+ s))

in Standard Model

� de�nition in analogy to Reduced Neutral Current
Cross Section �

� measurement of the parton densities



Selection of Charged Current Events

� Calorimeter and track based trigger =)
� = 50� 100% depending on Pt

� Pt > 12 GeV

� zvtx < 35 cm

� topological Non-ep-background �lters

� 
p background: Pt;antiparallel=Pt;parallel < 0:15

� reconstruction of kinematic variables from tracks
and calorimetris energy depositions

� good understanding of hadronic energy scale
essential



Single di�erential Charged Current
Cross Section
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� shape of cross section determined by propagator
mass

� statistical errors dominate



Neutral and Charged Current Cross Section
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� Neutral and Charged Current cross section approaching

each other with increasing Q2 as expected from Standard

Model

� remaining di�erence at high Q
2 due to coupling to

di�erent quark 
avours



Comparison of Reduced NC Cross Section

between "hadron" and "electron" method

� important cross check of hadronic energy scale control
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� electron and hadron method agree within
systematic errors only

� hadronic energy scale well known in terms of x
and Q2



Systematic Uncertainties for CC measurement

main error sources

� Trigger e�ciency (1� �) � 10%

� Vertex E�ciency � �1%
� Hadronic Energy scale �4%

� Noise suppression �25%
� Photoproduction background �50%

error on hadronic energy scale dominating



Reduced Charged Current Cross Section

�CC �
2�

G2

F

�
(M2

W
+Q2)

M2

W

�2
� x �

d2�

dxdQ2

0

0.5

1

1.5 Q2=400 GeV2

σ C
C

Q2=800 GeV2

0

0.2

0.4

0.6

Q2=2000 GeV2 Q2=4000 GeV2

0

0.1

0.2

0.3

10
-2

10
-1

1

Q2=8000 GeV2

x
10

-2
10

-1
1

Q2=16000 GeV2

H1 preliminary
e+p → ν

–
X

Standard Model
(MRSH)

x

� double di�erential measurement at high x and
high Q2

� good agreement with Standard Model prediction



Quark and Antiquark Contributions to CC
Cross Section
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� sensitivity to quark and antiquark densities at
high Q2



Comparison of Reduced
CC and NC Cross Section

Coupling to di�erent quarks in Neutral and Charged Current

interaction (QPM):

NC: �NC = x �
�
4

9
(u+ �u+ c+ �c) +

1

9
(d+ �d+ s+ �s)

�
(1 + �Z;L)

CC: �CC = x �
�
�u+ �c+ (1� y)2(d+ s)

�

)

� Main contribution to NC cross section from u type quarks

� CC Cross section at high y mainly determined by �u and

at low y mainly determined by d

use helicity dependence to estimate antiquark and
quark contribution to Charged Current cross section
{ neglect contribution from c, s and d in NC

{ compare

(1� y)2 � �NC � (1� y)2
4

9
x (uv + usea + �u)

�CC � (1� y)2 x dv + x (�u+ �c)

{ (1� y)2�NC=�CC �
4
9
uv=dv at high x (low y)

{ see antiquark density �u at low x
Warning: This is only a qualitative comparison!



Weighted NC and CC Cross Section

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Q2=800 GeV2

w
ei

gh
te

d 
cr

os
s 

se
ctio

n
Q2=2000 GeV2

0

0.1

0.2

0.3

0.4

0.5

10
-1

1

Q2=4000 GeV2

x 10
-1

1

Q2=8000 GeV2

x

σNC (1-y)2
σCC

� relation between NC and CC cross section as
expected from QPM

� measurement of d quark density and d=u ratio at
high Q2 will be done



Summary

� The excess of neutral current events observed at high Q
2 in the 94-96

data is still present, but with a lower signi�cance (' 2� at Q2 � 15000

GeV2 for the data taken from 94 to 97).

� Single and double di�erential Neutral Current cross-sections have been

measured for Q2 from 200 to 30000 GeV2, in the valence region up to

x = 0:65 with a precision comparable to the low Q
2 HERA data.

� These cross-section measurements are very well described over two

orders of magnitude in Q
2 by perturbative QCD, as shown by a Next

to Leading Order QCD �t

� At high Q
2 (� 10000 GeV2), the single di�erential d�=dx cross-section

favours the Standard Model expectation of a suppression of the

cross-section due to 
 � Z
0 interference.

� The single di�erential Charged Current cross sections shows the Q2

dependence as expected from the Standard Model

� The double di�erential Charged Current cross section has been

measured for Q2 = 400� 16000 GeV2 and x = 0:01� 0:5 and covers

the regions where valence- and the region where sea- quarks dominate

� We are looking forward to e�p data taking this year!


