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Abstract

The inclusive e*p single and double differential cross sections for neutral and charged
current processes are measured with the H1 detector at HERA. The data were taken in 1999
and 2000 at a centre-of-mass energy of \/s = 319 GeV and correspond to an integrated
luminosity of 65.2 pb~!. The cross sections are measured in the range of four-momentum
transfer squared Q2 between 100 and 30000 GeV? and Bjorken z between 0.0013 and
0.65. The neutral current analysis for the new e™p data and the earlier e~p data taken in
1998 and 1999 is extended to small energies of the scattered electron and therefore to higher
values of inelasticity y, allowing a determination of the longitudinal structure function Fz,
at high Q2 (110—700 GeV2). A new measurement of the structure function x F is obtained
using the new e*p and previously published e®p neutral current cross section data at high
Q2. These data together with H1 low Q2 precision data are further used to perform new
next-to-leading order QCD analyses in the framework of the Standard Model to extract
flavour separated parton distributions in the proton.
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1 Introduction

In 1992 the HERA accelerator began operation, colliding lepton and proton beams within the H1
and ZEUS experiments. The phase space covered by HERA inclusive deep inelastic scattering
(DIS) cross section measurements ranges from small Bjorken z at low Q?, the four-momentum
transfer squared, to large « at Q% values larger than the squared masses of the 1V and Z gauge
bosons. These measurements provide an insight into the partonic structure of matter and the dy-
namics of strong interactions and test quantum chromodynamics (QCD) over a huge kinematic
range.

Both neutral current (NC) interactions, ep — eX via v or Z° exchange, and charged current
(CC) interactions, ep — v.X via W exchange, can be observed at HERA, yielding complemen-
tary information on the QCD and electroweak (EW) parts of the Standard Model. The cross
sections are defined in terms of three kinematic variables %, = and y, where y quantifies the
inelasticity of the interaction. The kinematic variables are related via Q? = sxy, where s is the
ep centre-of-mass energy squared.

Measurements of the NC and CC cross sections in e*p scattering have been made by H1 and
ZEUS based on ~ 40 pb~! data sets taken between 1994 and 1997 [1, 2] with protons of energy
820 GeV and positrons of energy 27.6 GeV, leading to a centre-of-mass energy /s = 301 GeV.
Here, new e*p NC and CC cross section measurements, based on data taken at /s = 319 GeV
in 1999 and 2000, are presented with improved precision using a luminosity of 65.2pb~!.
The increased centre-of-mass energy stems from the change in the proton beam energy from
820 GeV to 920 GeV since 1998. These data sets together provide the most accurate neutral
and charged current cross sections measured by H1 at high Q2 (> 100 GeV?) in the first phase
of HERA operation (HERA-I).

The NC analysis is extended to higher 3 up to 0.9 for 100 GeV? < @Q? < 800 GeV?. This
extension of the kinematic range allows a determination of the longitudinal structure function,
Fr(z,Q?%), to be made at high Q? for the first time. This analysis is performed on both the
99 — 00 e*p data and the e~ p data, taken in 1998 and 1999 with a luminosity of 16.4pb~! at
/s = 319 GeV. The extended high-y e~ p analysis and F, extraction complement the inclusive
cross section measurements published in [3]. The difference in NC cross sections between e p
and e~ p scattering at high Q? is employed to update the measurement of x F, superseding the
earlier measurement [3].

The accuracy and kinematic coverage of the H1 neutral and charged current cross section data
enable dedicated QCD analyses, which test the prediction of logarithmic scaling violations over
four orders of magnitude in Q2 and allow parton distribution functions (PDFs) of the proton to
be deduced. This in turn allows predictions to be made for future facilities such as the LHC,
deviations from which may be due to exotic phenomena beyond the Standard Model.

A next-to-leading order (NLO) QCD analysis of the H1 data alone is performed, using a novel
decomposition of the quark species into the up- and down-type quark distributions to which
the NC and CC cross section data are sensitive. The fit parameter space is narrowed using
theoretical constraints adapted to the new ansatz and the experimental and phenomenological
uncertainties are systematically approached. This leads to a description of the complete set of
NC and CC data as well as to new determinations of the PDFs and their uncertainties. For
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comparison, the QCD analysis is further extended to include the accurate proton and deuteron
data from the BCDMS muon scattering experiment [4].

This paper is organised as follows. In section 2 the definitions of the inclusive NC and CC
cross sections are given. In section 3 the detector, simulation and measurement procedures are
described. The QCD analysis method is explained in section 4, followed by the measurements
and the QCD analysis results in section 5. The paper is summarised in section 6.

2 Neutral and Charged Current Cross Sections

After correction for QED radiative effects, the measured NC cross section for the process
e*p — e* X with unpolarised beams is given by

d%20E 2T wea
dxdjg2 - Q4 ¢Nc(1+Ai ", (1)

with o, = Y F, FY_xFy —°F, (2)

where o = o(Q? = 0) is the fine structure constant. The A%5°** corrections are defined

in [5], with o and the Z and T/ boson masses (taken here as in [3] to be Mz = 91.187 GeV
and My, = 80.41 GeV) as the main electroweak inputs. The weak corrections are typically
less than 1% and never more than 3%. The NC structure function term ¢y was introduced
in [1] and is expressed in terms of the generalised structure functions F, xF; and F;. The
helicity dependences of the electroweak interaction are contained in Yy = 1+ (1 —y)%. The
generalised structure functions F, and zF; can be further decomposed as [6]

= F —u, H%QQF;Z + (V2 + a?) L@ 2 F¥ (3)
(@ +13) @)
- RQ? z RQ*
.I'Fg = W.TFV + (21)50,5) (m .Z'F?)Z, (4)
with k=1 = 4 (1 — —) in the on-mass-shell scheme [7]. The quantities v, and a, are the

vector and aX|aI vector Weak couplings of the electron! to the Z° [7]. The electromagnetic
structure function F originates from photon exchange only. The functions F# and 2 F¢ are
the contributions to F, and z Fy from Z° exchange and the functions F”Z and vaz are the
contributions from ~ Z interference. The longitudinal structure function FL may be decomposed
in @ manner similar to £5. Its contribution is significant only at high y.

Over most of the kinematic domain at HERA the dominant contribution to the cross section
comes from pure photon exchange via F,. The contributions due to Z° boson exchange only
become important at large values of Q2. For longitudinally unpolarised lepton beams the £
contribution is the same for e~ and for e* scattering, while the z £ contribution changes sign
as can be seenineg. 2.

LIn this paper “electron” refers generically to both electrons and positrons. Where distinction is required the
symbols et and e~ are used.



In the quark parton model (QPM) the structure functions F5, F;Z and £Z are related to the sum
of the quark and anti-quark momentum distributions, zq(x, Q%) and zg(x, Q?),

[Fz,F;ZaFQZ] :x2[62>26qvq77)§+a2]{Q+6} (5)

q

and the structure functions zF3y” and zF7 to their difference, which determines the valence
quark distributions, zq, (z, Q?),

[xF;Z> ngZ] =2 Z[eqaqa vgag{q —q} =2z Z 40y, Vgl gy - (6)

q q=u,d

In egs. 5 and 6, ¢, is the electric charge of quark ¢ and v, and a, are respectively the vector
and axial-vector weak coupling constants of the quarks to the Z9. In the QPM the longitudinal
structure function £, = 0.

For CC interactions the measured unpolarised ep scattering cross section corrected for QED
radiative effects may be expressed as

d20% G2 M2 2 vea

oS = b || e (14 A%, ©
. 1
with ¢%::§mmgxnm@—fwﬁ, (8)

where Aég”eak represents the CC weak radiative corrections. In this analysis G is defined [8]
using the weak boson masses and is in very good agreement with G determined from the
measurement of the muon lifetime [7]. The CC structure function term ¢, [1] is expressed in
terms of the CC structure functions W;=, W5 and xW;=, defined in a similar manner to the NC
structure functions [8]. In the QPM (where W= = 0), they may be interpreted as lepton beam-
charge dependent sums and differences of quark and anti-quark distributions and are given for
an unpolarised lepton beam by

Wy =2(U+D), aWy =2(D-U), Wy =x(U+ D), aWs =z(U—-D). (9)

Below the b quark mass threshold, U, 2D, xU and D are defined respectively as the sum of
up-type, of down-type and of their anti-quark-type distributions

U = z(u+c)
2U = z(u+7e)
xD = x(d+s)
D = x(d+3). (10)

For the presentation of the subsequent measurements it is convenient to define the NC and CC
“reduced cross sections” as

1 Q4 X d2O'NC
Y, 2ra? dzdQ?’

2mx |:M5V + Q2:|2 dzo'cc

~ 2
UCC(xv Q ) G% MX%V dde2 :

one(w, Q%) = 11)



3 Experimental Technique

3.1 HI1Apparatusand Trigger

The H1 co-ordinate system is defined such that the positive z axis is in the direction of the
outgoing proton beam (forward direction). The polar angle ¢ is then defined with respect to this
axis. A full description of the H1 detector can be found in [9-11]. The detector components
most relevant to this analysis are the Liquid Argon (LAr) calorimeter, which measures the posi-
tions and energies of particles over the range 4° < 6 < 154°, a lead-fibre calorimeter (SPACAL)
covering the range 153° < 6 < 177°, the Plug calorimeter covering the range 0.7° < 6 < 3.3°
and the inner tracking detectors, which measure the angles and momenta of charged particles
over the range 7° < 6 < 165°. In the central region, 25°<60<165°, the central jet chamber
(CJC) measures charged track trajectories in the (r, ¢) plane and is supplemented by two z drift
chambers to improve the & measurement of reconstructed tracks. The forward tracking detector,
6530°, is used to determine the vertex position of events when no reconstructed CJC track is
found.

The ep luminosity is determined by measuring the QED bremsstrahlung (ep — ep-y) event rate
by tagging the photon in a photon detector located at = = —103 m. An electron tagger is placed
at z = —33 m adjacent to the beam-pipe. It is used to check the luminosity measurement and to
provide information on ep — eX events at very low Q? (photoproduction) where the electron
scatters through a small angle (= — # < 5mrad).

NC events are triggered mainly using information from the LAr calorimeter. The calorime-
ter has a finely segmented geometry allowing the trigger to select localised energy deposits in
the electromagnetic section of the calorimeter. For electrons with energy above 11 GeV this is
100% efficient as determined using an independently triggered sample of events. At lower en-
ergies the triggers based on LAr information are supplemented by using additional information
from the tracking detectors. In 1998 the LAr calorimeter electronics were upgraded in order to
trigger scattered electrons with energies as low as 6 GeV, the minimum value considered in this
analysis. This gives access to the high y kinematic region. For electron energies of 6 GeV, the
overall trigger efficiency is 96% for the e*p data set and 90% for the earlier e~ p data set.

The characteristic feature of CC events is a large missing transverse momentum P;*%, which
is identified at the trigger level using the LAr calorimeter vector sum of “trigger towers”, i.e.
groups of trigger regions with a projective geometry pointing to the nominal interaction ver-
tex. At low P the efficiency is enhanced by making use of an additional trigger requiring
calorimeter energy in association with track information from the inner tracking chambers. For
the minimum P7¥ss of 12 GeV considered in the analysis the efficiency is 60%, rising to 90%
for Ppiss of 25 GeV. In terms of 2, the efficiency is 79% at 300 GeV? and increases to 98%
at 3000 GeV?. These efficiencies are determined from the data using a sample of NC events
in which all information from the scattered lepton is suppressed, the so-called pseudo-CC sam-
ple. The trigger energy sums are then recalculated for the remaining hadronic final state. This
sample also provides a useful high statistics cross check of further aspects of the CC analysis.



3.2 Simulation Programs

Simulated DIS events are used in order to determine acceptance corrections. DIS processes are
generated using the DJANGO [12] Monte Carlo (MC) simulation program, which is based on
LEPTO [13] for the hard interaction and HERACLES [14] for single photon emission off the
lepton line and virtual EW corrections. LEPTO combines O(«) matrix elements with higher
order QCD effects using the colour dipole model as implemented in ARIADNE [15]. The
JETSET program is used to simulate the hadronisation process [16]. In the event generation the
DIS cross section is calculated with the PDFs of [17]. The simulated cross section is reweighted
using a NLO QCD fit (H1 97 PDF fit) to previous data [1].

The detector response to events produced by the generation programs is simulated in detail
using a program based on GEANT [18]. These simulated events are then subjected to the same
reconstruction and analysis chain as the data.

The dominant photoproduction background processes are simulated using the PYTHIA [19]
generator with leading order PDFs for the proton and photon taken from [20]. Further back-
ground from QED-Compton scattering, lepton pair production via two-photon interactions,
prompt photon production and heavy gauge boson (W=, Z°) production are included in the
background simulation. Further details are given in [1].

3.3 Polar Angle Measurement and Energy Calibration

In the neutral current analysis the polar angle of the scattered electron (6.) is determined using
the position of its energy deposit (cluster) in the LAr calorimeter, together with the interaction
vertex reconstructed with tracks from charged particles in the event. The relative alignment of
the calorimeter and tracking chambers is determined using a sample of events with a well mea-
sured electron track, using information from both the CJC and the =z drift chambers. Minimisa-
tion of the spatial discrepancy between the electron track and cluster allows the LAr calorimeter
and the inner tracking chambers to be aligned. The residual discrepancy then determines the
systematic uncertainty on the measurement of 6., which varies from 1 mrad for 6, > 135° to
3mrad for 6, < 120°.

The calibration of the electromagnetic part of the LAr calorimeter is performed using the
method described in [1]. Briefly, the redundancy of the detector information allows a predic-
tion of the scattered electron energy (E!) to be made based on the electron beam energy (E£.),
the polar angle measurement of the scattered electron and the inclusive polar angle (v4) [1]
of the hadronic final state. This prediction of the double angle (DA) kinematic reconstruction
method [21] is then compared with the measured electromagnetic energy, allowing local cali-
bration factors to be determined in a finely segmented grid in z and ¢. The calibration procedure
is also performed on the simulated data. The final calibration is obtained by application of a
further small correction determined from simulation, which accounts for small biases in the
reconstruction of ~,. The calibration is cross checked using independent data samples from
QED-Compton scattering and two-photon e*e~ pair production processes. The total system-
atic uncertainty on the absolute electromagnetic energy scale varies from 0.7% in the backward
part of the calorimeter to 3% in the forward region, where statistics are limited.
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Figure 1: Mean values of (@) Pr;/Pr. as afunction of Pr. and (b) yn/ypa as a function of
~y, for neutral current data (solid points) and Monte Carlo (MC) simulation (open points) for
v, > 15° and 12 GeV < Prj, < 50 GeV. The curves correspond to a+1% variation around the
simulation.

The hadronic final state is measured using energy deposits in the LAr and SPACAL calorime-
ters supplemented by low momentum tracks. Isolated low energy calorimetric deposits are
classified as noise and excluded from the analysis. The response of the detector to hadrons
is calibrated by requiring transverse momentum conservation between the precisely calibrated
scattered electron and the hadronic final state in NC events as described in [1]. The electron
transverse momentum is defined as Pr. = /p2 . + p3 .. The hadronic transverse momentum

Is determined from Pp ), = \/(Zi Pxi)? + (O, py.i)? Where the summation is performed over
all hadronic final state particles 7, assuming particles of zero rest mass.

Detailed studies and cross checks of the hadronic response of the calorimeter using the en-
larged data sample have led to an improved understanding of the hadronic energy measure-
ment. The calibration procedure is cross checked by requiring energy-momentum conserva-
tion, E — P, = (E! — p..) + (En, — P.) = 2E,, with E}, — P, ;, being the contribution of all
hadronic final state particles Y .(E; — p.;). In addition, the reference scale may be taken from
the double angle method prediction rather than from the scattered electron. These studies have
allowed the systematic uncertainty on the hadronic scale to be reduced with respect to previous
measurements [1, 3] in the region 12 GeV < Prj; < 50 GeV and 7, > 15°. The uncorrelated
part (see section 3.6) of the hadronic scale uncertainty is reduced to 1% from 1.7% previously.

Fig. 1 demonstrates the quality of the hadronic calibration in the stated region of Py, and v,
showing the level of agreement between data and simulation after the calibration procedure.
In fig. 1(a) the mean value of the ratio Pr,/Pr. is shown. In fig. 1(b) the inelasticity v, de-
fined from the hadron reconstruction method [22] as vy, = (E), — P.)/2E., is compared with
the DA variable yp 4. In this analysis, it is the relative difference between data and simulation
that is relevant and good agreement is found to within 1%. In addition a 1% correlated uncer-
tainty is considered, accounting for possible remaining biases in the reference scale used for the
calibrations.



3.4 Neutral Current Measurement Procedure

Events from inelastic ep interactions are required to have a well defined interaction vertex to
suppress beam-induced background. High Q2 neutral current events are selected by requiring a
compact and isolated energy deposit in the electromagnetic part of the LAr calorimeter?. The
scattered electron is identified as the cluster of highest transverse momentum. In the central
detector region, # > 35°, the cluster has to be associated with a track measured in the inner
tracking chambers.

As mentioned earlier, energy-momentum conservation requires £ — P, = 2FE,. Restricting the
measured £ — P, to be greater than 35 GeV thus considerably reduces the radiative corrections
due to initial state bremsstrahlung, where photons escape undetected in the backward direction.
It also suppresses photoproduction background in which the scattered electron is lost in the
backward beam-pipe and a hadron fakes the electron signal in the LAr calorimeter. Since the
photoproduction background contribution increases with y, the analysis is separated into two
distinct regions where different techniques are employed to suppress this background. The
nominal analysis is restricted to y. < 0.63 for 90 GeV? < Q? < 890 GeV? and y, < 0.90 for
@Q? > 890 GeV?. This limits the minimum E’ to 11 GeV. The high-y analysis is performed
for ' > 6GeV, 0.63 < y. < 0.90 and 90 GeV? < @Q? < 890 GeV?>. Here y, and Q? are
reconstructed using the scattered electron energy and angle, the so-called electron method.

The NC kinematics in the nominal analysis are reconstructed using the eX method [23], which
uses E., 6. and E}, — P, and has good resolution and small sensitivity to QED radiative
corrections over the accessible phase space. In the high-y analysis the electron method gives
the best resolution and is used to define the event kinematics.

The nominal data sample consists of about 185000 events. The comparison of the data and
the simulation is shown in fig. 2 for the scattered electron energy and polar angle spectra and
the distribution of £ — P., which are used in the reconstruction of = and Q2. All distributions
are well described by the simulation, which is normalised to the luminosity of the data. In
the nominal analysis the small photoproduction contribution is statistically subtracted using the
background simulation.

In the high-y analysis, the photoproduction background plays an increasingly important role, as
low energies of the scattered electron are accessed. For this analysis, the calorimeter cluster of
the scattered electron is linked to a well measured track having the same charge as the electron
beam. This requirement removes a sizeable part of the background, where 7° — ~~ decays give
rise to fake scattered electron candidates. The remaining background from photoproduction was
estimated from the number of data events in which the detected lepton candidate has opposite
charge to the beam lepton. This background is statistically subtracted assuming charge symme-
try. The charge symmetry is determined to be 0.99 + 0.07 by measuring the ratio of wrongly
charged fake scattered lepton candidates in e*p and e~ p scattering, taking into account the dif-
ference in luminosity. The charge symmetry is cross checked using a sample of data events in
which the scattered electron is detected in the electron tagger and a systematic uncertainty of
10% on the charge symmetry is assigned. Further details are given in [24, 25].

2Local detector regions are removed where the cluster of the scattered electron is not expected to be fully
contained in the calorimeter, or where the trigger is not fully efficient.
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Figure 2: Distributions of E' for (a) Q> > 150 GeV? and (b) Q* > 5000 GeV?, (¢) 6, and
(d) E — P, for e*p data (solid points) and Monte Carlo (MC) simulation (open histograms) in
the nominal analysis. The shaded histograms show the simulated background (bg) contribution,
dominated by photoproduction.

In total about 24 000 e*p events and 5000 e~ p events are selected in the high-y analysis.
Figs. 3(a)-(c) show the scattered lepton energy spectrum, the polar angle distribution and the
E — P, spectrum for both the e™p and e~ p data sets after background subtraction. The simula-
tion, normalised to the luminosity of the data, provides a good description of these distributions.
In fig. 3(d) the energy spectra of wrong charge lepton candidates in the data sets are shown.
Good agreement is observed when the e*p data are normalised to the luminosity of the e p
data set.

3.5 Charged Current Measurement Procedure

The selection of charged current events requires a large missing transverse momentum, P =
Pr;, > 12 GeV, assumed to be carried by an undetected neutrino. In addition the event must
have a well reconstructed vertex as for the NC selection. The kinematic variables y;, and Q% are
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Figure 3: Distributionsof (a) E., (b) 0. and (c) E— P, for e™p data(solid points), e~ p data (open
points) and Monte Carlo (MC) simulation (histograms) in the high-y analysis after background
subtraction (see text). In (c) the E — P, cut is not goplied, but is indicated by the dashed
vertical line. Shown in (d) is the energy distribution of wrongly charged lepton candidates in
background events. In (d) thee™ p data have been normalised to the luminosity of thee™p data
Set.

determined using the hadron kinematic reconstruction method [22]. In order to restrict the mea-
surement to a region with good kinematic resolution the events are required to have y; < 0.85.
In addition the measurement is confined to the region where the trigger efficiency is = 50%
by demanding y;, > 0.03. The ep background is dominantly due to photoproduction events in
which the electron escapes undetected in the backward direction and missing transverse mo-
mentum is reconstructed due to fluctuations in the detector response or undetected particles.
This background is suppressed using the ratio V,,/V}, and the difference in azimuth between
ﬁT,h as measured in the main detector and the Plug calorimeter, A¢;, piue [3]. The quantities V,
and V,,, are respectively the transverse energy flow parallel and anti-parallel to ]3T,h, the trans-
verse momentum vector of the hadronic final state. The residual ep background is negligible for
most of the measured kinematic domain, though it reaches 15% at the lowest Q2 and the highest
y. The simulation is used to estimate this contribution, which is subtracted statistically from the
CC data sample with a systematic uncertainty of 30% on the number of subtracted events. The
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non-ep background is rejected as described in [1] by searching for event topologies typical of
cosmic ray and beam-induced background. For further details see [26, 27].

After all selection criteria are applied, the final CC data sample contains about 1 500 events. The
data and simulation are compared in fig. 4 for the Pr,;, and Ej, — P, ;, spectra, which are directly
used in the reconstruction of the kinematic variables y and Q2. In both cases the simulation
gives a reasonable description of the data.

H1 Charged Current Data
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Figure 4: Distributions of (a) Pr, and (b) E}, — P, ;, for CC data (solid points) and Monte Carlo
(MC) simulation (open histograms). The shaded histograms show the simulated background
(bg) contribution, dominated by photoproduction.

3.6 Cross Section M easurement and Systematic Uncertainties

For both the NC and CC analyses the selected event samples are corrected for detector accep-
tance and migrations using the simulation and are converted to bin-centred cross sections. The
bins in the (z, Q?) plane are defined as in refs. [1, 3], based on the consideration of the detector
resolution and event statistics. The bins used in the measurement are required to have values
of stability and purity® larger than 30%. This restricts the range of the NC measurements to
y Z 0.005. The QED radiative corrections (A%¢) are defined in [1] and were calculated
using the program HERACLES [14] as implemented in DJANGO [12].

The systematic uncertainties on the cross section measurements are presented in tables 6-13.
They are split into bin-to-bin correlated and uncorrelated parts. All the correlated systematic
errors are found to be symmetric to a good approximation and are assumed so in the following.
The total systematic error is formed by adding the individual errors in quadrature.

The correlated and uncorrelated systematic errors are discussed briefly below (see refs. [24-28]
for more details). In addition, there is a global uncertainty of 1.5% and 1.8% on the luminosity

3The stability (purity) was defined in [1] as the number of simulated events which originate from a bin and
which are reconstructed in it, divided by the number of generated (reconstructed) events in that bin.

13



measurement for the e™p and e~ p data respectively, of which 0.5% is common to both (see
section 4.1).

e The total uncertainty on the electron energy scale is 1% if the z impact position of the
electron at the calorimeter surface (z;,,,) is in the backward part of the detector (z;,,, <
—150 cm), 0.7% in the region —150 cm < 2, < 20 cm, 1.5% for 20 < 2, < 100 cm
and 3% in the forward part (z;,,, > 100 cm). The correlated part of the total uncertainty
comes mainly from the possible bias of the calibration method and is estimated to be 0.5%
throughout the LAr calorimeter. It results in a correlated systematic error on the NC cross
section which is typically below 1%, increasing at low y to ~ 3% for Q21000 GeV?
and ~ 8% for larger (2.

e The correlated uncertainty on the electron polar angle is 1 mrad, 2mrad and 3 mrad for
0., > 135° 120° < 6, < 135° and 6, < 120°, respectively. This leads to a typical
uncertainty on the NC reduced cross section of less than 1%, increasing up to ~ 5% at
high x.

e A 0.5% (1%) uncorrelated error originates from the electron identification efficiency in
the NC nominal (high-y) analysis for z;,,,, < —5cm. For z;,,, > —5 cm the uncertainty is
increased to 2%. The precision of this efficiency is estimated using an independent track
based electron identification algorithm, limited for z;,,, > —5 cm by statistics.

e A 0.5% uncorrelated error is assigned on the efficiency of the scattered electron track-
cluster link requirement in the NC nominal analysis. In the high-y analysis this is in-
creased to 1%.

e An uncorrelated 1% uncertainty on the hadronic energy measured in the LAr calorimeter
is assigned for the region 12 GeV < Prj; < 50 GeV and v, > 15°. Outside this region
the uncertainty is increased to 1.7%. In addition, a 1% correlated component to the un-
certainty is added in quadrature, originating from the calibration method and from the
uncertainty on the reference scale. This yields a total uncertainty of 1.4% and 2% for the
two regions respectively.

e The uncertainty on the hadronic energy scale of the SPACAL calorimeter is 5%. The
uncertainty on the hadronic energy measurement due to the inclusion of low momen-
tum tracks is obtained by shifting their contribution by 3%. The influence on the cross
section measurements from these sources is small compared with that from the corre-
lated uncertainty from the LAr calorimeter energy scale. The three contributions (LA,
SPACAL, tracks) are thus combined, resulting in a single correlated hadronic error from
the hadronic energy measurement, which is given in the tables. The corresponding error
on the NC and CC cross sections is typically S 1%, but increases at low y to ~ 5%.

e A 25% uncertainty is assigned on the amount of energy in the LAr calorimeter attributed
to noise, which gives rise to a sizeable correlated systematic error at low y, reaching
~ 10% at z = 0.65 and Q%<2 000 GeV? in the NC measurements.

e In the CC analysis the correlated uncertainties due to the cuts against photoproduction
on V,,/V, and A¢y, pue are only significant at high y, low Q2 and low Py, reaching a
maximum of ~ 7%.
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e In the CC and the NC nominal analyses the photoproduction background is estimated
from simulation. A 30% correlated uncertainty on the subtracted photoproduction back-
ground is determined from a comparison of data and simulation for a phase space region
dominated by photoproduction background. This results in a systematic error of typically
S1%.

e In the NC high-y analysis the photoproduction background is estimated directly from
the data by using wrongly charged (fake) scattered lepton candidates, which leads to a
10% correlated uncertainty on the subtracted photoproduction background. The resulting
uncertainty on the measured cross sections is 1% or less.

e A 0.3% uncorrelated error is considered on the trigger efficiency in the NC nominal anal-
ysis and 2 — 6% in the CC analysis. For the NC high-y analysis the uncertainty on the
cross section is ~ 2% at low (92, decreasing to 0.6% at the highest Q? in the analysis.

e An uncorrelated error of 1% (NC) and 3% (CC) is estimated on the QED radiative cor-
rections by comparing the radiative corrections predicted by the Monte Carlo program
(DJANGO) with those calculated from HECTOR and EPRC [29]. The error also ac-
counts for a small missing correction in DJANGO due to the exchange of two or more
photons between the electron and the quark lines.

e A 3% uncorrelated error is assigned on the event losses due to the non-ep background
finders in the CC analysis, estimated from pseudo-CC data (see section 3.1).

e A 2% uncorrelated error (5% for y < 0.1) on the vertex finding efficiency for CC events
is estimated using pseudo-CC data.

Overall a typical total systematic error of about 3% (6%) is reached for the NC (CC) double
differential cross section. This precision has been achieved through detector improvements
for triggering and a better understanding of the hadronic response of the detector, the electron
identification and its angular measurement.

4 QCD Analysis

The cross section data presented here, together with the low (2 precision data [30] and high
Q? e*p data [1, 3] previously published by the H1 Collaboration, cover a huge range in Q2
and x. The improved accuracy now available allows the predictions of perturbative QCD to be
tested over four orders of magnitude in Q2 from about 1 GeV? to above 10* GeV?, and z from
below 10~* to 0.65. The measurements of NC and CC e*p scattering cross sections provide
complementary sensitivity to different quark distributions and the gluon distribution, zg(z, Q?).
This is used to determine the sum of up-type zU, of down-type x D and of their anti-quark-type
zU and 2D distributions, employing only H1 inclusive cross section data.

With the current beam energies, the HERA collider data do not give access to the large x region
of deep inelastic scattering at medium Q2 (~ 100 GeV?). Complementary information on quark
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distributions in this region is provided by fixed-target lepton-proton data. Lepton-deuteron scat-
tering data, which provide further constraints on the PDFs, are not yet available from HERA.
Therefore, in the subsequent analysis, the H1 data are also combined with the precise BCDMS
muon-proton and muon-deuteron scattering data and the results are compared for cross checks
of the PDFs obtained from the analysis of the H1 data alone.

4.1 Ansatz

Traditionally, QCD analyses of inclusive deep inelastic scattering cross section data have used
parameterisations of the valence quark distributions and of a sea quark distribution, imposing
additional assumptions on the flavour decomposition of the sea [1, 31-33]. The neutral and
charged current cross section data presented here, however, are sensitive to four combinations
of up- and down-type (anti-)quark distributions which, for Q2 less than the bottom quark pro-
duction threshold, are given above in eq. 10. Working in terms of these combinations weakens
the influence of necessary assumptions on the flavour decomposition of the sea in the fit. The
valence quark distributions are obtained from

xuv:x(U—U), xdvzx(D—E) (12)
and are not fitted directly.

In the QPM, the charged current structure function terms ¢, are superpositions of the distri-
butions given in eq. 10 according to

oo =2U + (1 —y)*2D, ¢ge=a2U+ (1 —y)*aD. (13)

The neutral current structure function terms ¢, are dominated by the electromagnetic structure
function F5 , which can be written as

4 — 1 —
F2:§x(U+U)+§x(D+D). (14)
In the high % neutral current data, complementary sensitivity is obtained from the interference
structure function 2 Fy” = x[2(U — U) + (D — D)]/3, but still higher luminosity is required to
exploit this for a dedicated determination of the valence quarks.

In the fit to the H1 and BCDMS data, the isoscalar nucleon structure function £ is determined
by the singlet combination of parton distributions and a small contribution from the difference
of strange and charm quark distributions,

FQN:%x(U—l—U—I—D—I—E)+%x(c+6—s—§). (15)
The nucleon data obtained from the BCDMS muon-deuteron cross sections are measured for
x > 0.07. For these data nuclear corrections are applied following [34]. In eqg. 15 the charm
and strange quark distributions occur explicitly and may be constrained using experimental data
as provided by H1 and ZEUS on the charm contribution to 3 [35,36] and from NuTeV on the
strangeness content of the nucleon [37]. The analysis of the H1 data, however, is rather in-
sensitive to these quark distributions. They are assumed to be fixed fractions of the up- and
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down-type quark distributions respectively at the initial scale of the QCD evolution (see sec-
tion 4.2).

The analysis is performed in the M S renormalisation scheme using the DGLAP evolution equa-
tions [38] at NLO [39]. The structure function formulae given here are thus replaced by integral
convolutions of coefficient functions and PDFs. An approach is used whereby all quarks are
taken to be massless, including the charm and bottom quarks, which provides an adequate de-
scription of the parton distributions in the high Q? kinematic range of the new data presented
here. The bottom quark distribution, zb, is assumed to be zero for Q* < m? where mj is the
bottom quark mass.

Fits are performed to the measured cross sections calculating the longitudinal structure func-
tions to order o2 and assuming the strong coupling constant to be equal to a,(M2) = 0.1185 [7].
All terms in egs. 1 and 7 are calculated, including the weak corrections, Ay ¢ The analysis
uses an x space program developed inside the H1 collaboration [40], with cross checks per-
formed using an independent program [41]. In the fit procedure, a x? function is minimised
which is defined in [30]. The minimisation takes into account correlations of data points caused
by systematic uncertainties allowing the error parameters (see table 2), including the relative
normalisation of the various data sets, to be determined by the fit. The fit to only H1 inclusive
cross section data, termed H1 PDF 2000, uses the data sets as specified in table 1. The table
additionally lists the BCDMS data used in a further fit for comparison with the H1 PDF 2000

fit.

data set process x range Q? range oL ref. comment
(Gev?) (Gev?) | (%)

HI minmum bias 97 _eTp NC | 0.00008 _ 0.02 5 12 | 1.7 [30] | +/5 = 301 GeV

Hllow Q296 —97 etpNC | 0.000161 0.20 12 150 | 1.7 [30] | /s = 301GeV

HlhighQ2 94— 97 etpNC | 0.0032 0.65 150 30000 | 1.5 1 | Vs =301GeV

HlhighQ294—97 etpCC | 0.013 0.40 300 15000 | 1.5 [1 | /5= 301GeV

HlhighQ298 —99 e~ pNC | 0.0032 0.65 150 30000 | 1.8 [3] | Vs =319GeV

HlhighQ298—99 e pCC | 0.013 0.40 300 15000 | 1.8 [3] | 5 =319GeV

H1highQ298 —99 e~pNC | 0.00131  0.0105 100 800 | 1.8 | thisrep. | /s = 319 GeV; high-y data

Hlhigh@Q299 —00 etpNC | 0.0032 0.65 150 30000 | 1.5 | thisrep. | /s = 319 GeV;incl. high-y data

H1highQ299—00 etpCC | 0.013 0.40 300 15000 | 1.5 | thisrep. | /5 = 319 GeV

BCDMSp apNC | 0.07 0.75 75 230 | 3.0 [4] | requirey, > 0.3

BCDMS-D uDNC | 0.07 0.75 7.5 230 | 3.0 [4] | requirey, > 0.3

Table 1: Data sets from H1 used in the H1 PDF 2000 fi t and from BCDMS y.-proton and .-
deuteron scattering used in the H1I+BCDM Sfi t. Asfor the previous H1 QCD analysis [30], the
origina BCDM S data are used at four different beam energiesimposing the constrainty,, > 0.3.

The inelasticity y,, was defi ned using BCDM S beam energies. The normalisation uncertainties
of each data set (6*) are given as well as the kinematic ranges in x and Q?. The uncertainty
6% includes a common error of 0.5% for the H1 data sets (see text). The nominal analysis and
high-y analysis do not overlap in kinematic coverage (see section 3.4).

The correlated systematic uncertainties for the H1 cross section measurements may be corre-
lated across data sets as well as between data points, since they may arise from the same source.
They are thus not treated independently in the QCD analysis presented here. The relationship
between the error sources as used in the fitting procedure is summarised in table 2 for each of
the eight correlated systematics considered. This leads to 18 independent error parameters. In
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addition, all H1 quoted luminosity uncertainties have a common contribution of 0.5% arising
from the theoretical uncertainty on the Bethe-Heitler cross section. This common contribution
has been taken into account in the QCD analysis.

data set process | 0% oF 67 oF N 6P oV §°
H1 minimumbias 97 e"pNC | L1 FE1 #1 hl N1 Bl — —
Hllow Q296 —97 etpNC|L£2 E1 61 hl N1 Bl — —
HL1highQ?94—97 etpNC | L3 E2 62 h2 N1 B2 — —

H1high@Q?94—97 etpCC|L3 — — h2 N1 B2 V1 -—
H1highQ?98—-99 e pNC| L4 E2 03 h2 N1 B2 — S1
HL1high@Q?98—99 e pCC|L4 — — h2 N1 B2 V2 —
H1high@Q?99—00 etpNC| L5 E2 603 h2 N1 B2 — S1
H1highQ?99—00 etpCC|L5 — — h2 N1 B2 V2 —

Table 2: Treatment of the correlated systematic error sources for the H1 data sets used in the
fits. For each of the eight correlated systematic error sources, one or more parameters are
included in the QCD fi t procedure. The sources considered are dueto the luminosity uncertainty
(6©), the electron energy uncertainty (57), the electron polar angle measurement uncertainty
(6%), the hadronic energy uncertainty (6"), the uncertainty due to noise subtraction (5), the
photoproduction dominated background simulation error (52), the uncertainty due to the cuts
against photoproduction in the CC analysis (§") and the error on the charge symmetry in the
high-y analysis (5°). The table entries indicate the correlation of the error sources across the
H1 data sets. For example, the uncertainty due to the noise subtraction is the same for all data
sets leading to one common parameter in the fi t (N'1), whereas the electron energy uncertainty
has two independently varying parameters (1 and E2) for the H1 NC data sets only.

4.2 Parameterisations

The initial parton distributions, P = zg, 2U, D, xU, D, are parameterised at Q? = Q2 in
the following general form

rP(z) = ApazPP (1 — 2)°P[1 + Dpx + Epa® + Fpa® + Gpa?]. (16)

The QCD analysis requires choices to be made for the initial scale (Q32) and the minimum Q?
of the data considered in the analysis (Q?,,,,). Variations of both Q2 and Q?,;,. are studied. As
in [30] Q3 is chosen to be 4 GeV? and Q?,,,, = 3.5 GeV?. Reasonable variations of these choices
are considered as part of the model uncertainties on the parton distributions (section 5.3).

The general ansatz, eq. 16, represents an over-parameterisation of the data considered here. The
specific choice of these parameterisations is obtained from saturation of the x2: an additional
parameter D, E, F or G is considered only when its introduction significantly improves the y 2.
The appropriate number of parameters also depends on the data sets included in the fit. The
H1 data requires less parameters than the combined H1 and BCDMS data due to the precise
BCDMS proton and deuteron data in the large = region, where the cross section variations with

x are particularly strong.
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The fit to the H1 data uses the following functional forms

rg(r) = AP (1—2)% -[1+ Dya]

2U(z) = AyzPv(1—2)% -[1+ Dyx + Fya®]
rD(z) = Apx®P(1 —2)°? . [1 + Dpa] (17)
2U(r) = AgaPv(1 —2)T

rD(x) = ApzPr(1—2)7,

in which the number of free parameters are further reduced using the constraints and assump-
tions detailed below.

The number of parameters required by the fit for the different parton distributions follows the
expectation. A high z term E,z? is not needed in the gluon distribution, since at large z the
scaling violations are due to gluon bremsstrahlung, i.e. are independent of the gluon distribution.
The zU and 2D distributions require more parameters than the anti-quark distributions 20U
and zD because the former are a superposition of valence and sea quarks, in contrast to the
latter. Due to the different electric charges, e2 = 4¢2, and the y dependence of the charged
current cross section, the data are much more sensitive to the up quark than to the down quark
distributions. Thus less parameters are needed for =D than for zU.

A number of relations between parameters can be introduced naturally in this ansatz. At low
x the valence quark distributions are expected to vanish and the sea quark and the anti-quark
distributions can be assumed to be equal. Thus the low = parameters A, and B, are required to
be the same for 2U, 2U and for 2D, xD. In the absence of deuteron data from HERA there is
no distinction possible of the rise towards low x between xU and xD. Thus the corresponding
B parameters are required to be equal, i.e. By = Bp = By = By = B,. Further constraints
are the conventional momentum sum rule and the valence quark counting rules.

The ansatz presented above allows the quark distributions zU, =D, zU, =D to be determined.
Further disentangling the individual quark flavour contributions to the sea is possible only with
additional experimental information and/or assumptions. Assuming that the strange and charm
sea quark distributions =s and zc can be expressed as x-independent fractions f, and f. of 2D
and 2U at the starting scale of Q2 = 4 GeV? (see table 5), a further constraint is used in the fit:
Ag = A - (1 — f,)/(1 — f.), which imposes that d/z — 1 as 2 — 0.

The total number of free parameters of the five parton distributions is thus equal to 10 in the fit
to the H1 data. The y? value is hardly improved by including any half integer power of =. The
parametric form of eq. 17 is also found starting from an alternative polynomial in z*, which
includes half integer powers up to z°/2. The addition of the large  BCDMS yup and ;D data
leads to two additional terms, Gy2* and Fp23, in the polynomials.

5 Resaults

5.1 NCand CC Cross Sectionsdo /dQ?, do/dx and o3,

The e*p single differential neutral current cross section do/dQ? measured for y < 0.9 is
shown in fig. 5(a). The data are compared with previous H1 e*p measurements made at
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/s = 301 GeV. The new cross sections are found to be higher than the measurement from
94 — 97 as expected due to the increase in centre-of-mass energy. Both cross sections, falling by
over six orders of magnitude for the measured Q2 region between 200 GeV? and 30 000 GeV?,
are well described by the H1 PDF 2000 fit. The error band represents the total uncertainty as
derived from the QCD analysis by adding in quadrature the experimental and model uncer-
tainty. The experimental uncertainty on the predicted cross sections is significantly larger than
the model uncertainty, which is discussed in section 5.3. Fig. 5(b) shows the ratios of the mea-
surements to the corresponding Standard Model expectation determined from the H1 PDF 2000
fit. Note that in this lower figure the H1 data are scaled by the normalisation shift imposed by
the QCD fit given in table 3. The new data are given in table 6.

The Q? dependence of the charged current cross section from the 99 — 00 data is shown in
fig. 6(a). For consistency with the NC cross sections, the data are presented in the range y < 0.9,
after correction* for the kinematic cuts 0.03 < y < 0.85 and Pr;, > 12GeV (section 3.5).
The data are compared with the previous measurement taken at lower centre-of-mass energy.
The ratios of data to expectations are shown in fig. 6(b) together with the Standard Model
uncertainty. Again in this lower figure the H1 data are scaled by the normalisation shift imposed
by the QCD fit, given in table 3. The two data sets agree well with each other, though the new
data have a tendency to be higher than the fit result at high Q2. The data are listed in table 7.

Fig. 7 shows the ) dependences of the NC and CC cross sections representing the total e*p
and e~ p data sets taken at HERA-I. The ™ p data have been combined after scaling the 94 — 97
data to /s = 319 GeV, using the H1 PDF 2000 fit and the procedure described in [27]. At low
Q)? the NC cross section exceeds the CC cross section by more than two orders of magnitude.
The sharp increase of the NC cross section with decreasing 2 is due to the dominating photon
exchange cross section with the propagator term oc 1/Q*. In contrast the CC cross section
(~ [ME/(Q* + M&V)]Q) approaches a constant at low Q2. The CC and NC cross sections are of
comparable size at Q% ~ 10* GeV?2, where the photon and Z° exchange contributions to the NC
cross sections are of similar size to those of 1+ exchange. These measurements thus illustrate
unification of the electromagnetic and the weak interactions in deep inelastic scattering. While
the difference in NC cross sections between e™p and e~ p scattering is due to vZ interference,
the difference of CC cross sections arises from the difference between the up and down quark
distributions and the less favourable helicity factor in the e™p cross section (see eq. 13).

The single differential cross sections do/dx are measured for Q2 > 1000 GeV? for both NC
and CC and also for Q@ > 10000 GeV? in the NC case. The NC data are compared in fig. 8 with
the previous H1 e*p measurement at /s = 301 GeV and the corresponding expectations from
the fit. A similar comparison for the CC data is shown in fig. 9. Increases with /s are observed
in both the NC and the CC cross sections, in agreement with the expectations. The fall in the
cross sections at low z is due to the restriction y < 0.9. The measurements are summarised in
tables 8-10.

The total CC cross section has been measured in the region Q2 > 1000 GeV? and y < 0.9 after
applying a small correction factor of 1.03 for the y and Py, cuts, determined from the H1 PDF
2000 fit. The result is

ot (eTp; /s = 319 GeV) = 19.19 4 0.61(stat.) £ 0.82(syst.) pb,

4The correction factors are given in table 7.
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where the 1.5% normalisation uncertainty is included in the systematic error. This is to be
compared with the value from the H1 PDF 2000 fit 0% (e Tp) = 16.76+0.32 pb. The difference
between the measurement and the fit is 2.3 standard deviations assuming the correlation of
uncertainties between measurement and fit is negligible. An unbiased theoretical expectation
for o5t (e p) may be obtained by repeating the H1 PDF 2000 fit but excluding the new 99 — 00
CC data, which leads to 16.66 + 0.54 pb.

Additionally, the analysis has been performed on the 94 — 97 data set at the lower centre-of-mass
energy, yielding

ol (etp; /s = 301 GeV) = 16.41 4= 0.80(stat.) + 0.90(syst.) pb.

This is to be compared with the cross section obtained from the H1 PDF 2000 fit {54 (e p) =
14.76 + 0.30 pb. Assuming that the systematic uncertainties are fully correlated and part of the
luminosity uncertainties are common (section 4.1), the 94 — 97 and 99 — 00 measurements are
combined [27] yielding a value of

ot (etp; /s = 319 GeV) = 18.99 4 0.52(stat.) & 0.81(syst.) pb.

5.2 NC and CC Double Differential Cross Sections

The double differential NC reduced cross section, 6 y¢ (defined in eqg. 11), is shown in fig. 10
for both the nominal and high-y 99 — 00 e™p data. In addition the new high-y 98 — 99 ¢~ p data
are presented. The data agree well with the expectations of the H1 PDF 2000 fit, which are also
shown®. The rise of the Standard Model DIS cross section towards low z (high y) departs from
the monotonic behaviour of £ due to the contribution of the longitudinal structure function £7,.
This allows F7, to be determined in the high y region (section 5.5).

In fig. 11 the e™p NC large z cross section data at \/s = 319 GeV are compared with the data
obtained previously [1] at /s = 301 GeV. The two data sets are found to be in agreement
with each other and with the H1 PDF 2000 fit. Fig. 11 also shows the data from the recent H1
measurement at lower Q2 [30] and the fixed-target data from BCDMS [4]. The fit description
of the BCDMS data, which are not used in the fit, is remarkably good except at very large
r = 0.65. A similar observation has already been reported in [1,30]. At the highest Q? a
decrease of the cross section is expected due to the negative + 7 interference in e p scattering.

In fig. 12 the reduced CC cross section, 6¢¢ (defined in eq. 11), is shown for the new data and
the data taken at lower energy between 1994 and 1997. These data are found to be compatible
with each other considering the weak energy dependence of the reduced CC cross section. An
extension of the z range for Q? = 3000 GeV? and 5000 GeV? is achieved due to the improved
trigger efficiency. The combined 94 — 00 result is compared in fig. 13 with the expectation from
the H1 PDF 2000 fit. Also shown is the expected contribution of the xD distribution, which
dominates the cross section at large . The HERA e*p CC data can thus be used to constrain
the d quark distribution in the valence region.

All double differential measurements together with the contributions of each of the major sys-
tematic uncertainties are listed in tables 11-13.

5The normalisation factors as determined by the QCD fit (table 3) are not applied to the data shown in the
figure.

21



5.3 Fit Resaults

In this section, the results of the QCD analysis are presented. The 2 value for each data set
is given in table 3 as well as the optimised relative normalisation as determined from the fit.
The total y2 value® per degree of freedom (x2/ndf) is 540/(621 — 10) = 0.88. The NLO QCD
fit requires the lowest Q? data (H1 minimum bias 97, Q% < 12 GeV?) to be raised by 3.7%,
corresponding to 2.3 standard deviations in terms of the normalisation uncertainty excluding the
common error of 0.5% (see section 4.1). In contrast all data for Q2 > 100 GeV? are lowered,
by at most 1.9%. It can not yet be decided whether this behaviour is due to inadequacies in the
theory (e.g. the missing higher order terms in In Q?) or experimental effects.

data set process | data points | x? (unc. err.) | x* (corr. err.) | normalisation
H1 minimum bias 97 e*p NC 45 37.5 5.9 1.037
Hllow Q?96 —97 etpNC 80 71.2 1.3 1.008
H1high Q294 — 97 etpNC 130 89.7 2.1 0.981
H1 high Q?94 - 97 e™pCC 25 18.0 0.4 0.981
H1 highQ?98 —99 e pNC 139 114.7 1.0 0.991
H1 high Q?98 —99 e pCC 27 19.5 0.7 0.991
H1high Q299 —00 etpNC 147 142.6 2.6 0.985
H1 highQ?99—00 etpCC 28 32.4 0.9 0.985
Total 621 540 —

Table 3: For each data set used in the H1 PDF 2000 fi t, the number of data points is shown,
along with the x? contribution determined using the uncorrelated errors (unc. err.). Each of the
correlated error sources (see table 2) leads to an additional contribution [30], which is listed as
x? (corr. err.). Also shown is the optimised normalisation of the data set as determined by the
fit. The HINC98 — 99 ¢ p and H1 NC 99 — 00 e™p data include the high-y analyses.

The parameters of the initial parton distributions are given in table 4 (see also [42]) and the
distributions are shown in fig. 14. The inner error band describes the experimental uncertainty,
while the outer band represents the experimental and model uncertainties added in quadrature.

The experimental accuracy of the initial distributions is typically a few percent in the bulk of
the phase space of the H1 data. This accuracy has negligible dependence on Q2 but a strong
dependence on x. The best precision is achieved for the xU quark distribution, which amounts
to about 1% for = = 0.01 and reaches 3% and 7% at x = 0.4 and 0.65, respectively. The xD
quark distribution is only determined with moderate precision as it is predominantly constrained
by the CC e*p cross sections, which are still subject to limited precision. The corresponding
uncertainties on x D at the three quoted x values are respectively ~ 2%, ~ 10% and ~ 30%.

These uncertainties reflect the kinematic dependence and size of the measurement errors. How-
ever the error size also depends significantly on the fit assumptions. If, for example, the con-
straint between Az and A on the low = behaviour of the anti-quark distributions is relaxed,
the small uncertainty at low = = 0.01 is much increased to ~ 6% and ~ 20% respectively for

61n the calculation of the 2, the assumption is made that the uncorrelated errors among different data points
within one data set stay uncorrelated with the corresponding data points from an independent data set.
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xU and xD. The measurement of the low x behaviour of up and down quarks and their possible
distinction requires electron-deuteron data to be taken at HERA.

The model parameter uncertainties on the PDFs are determined in a similar manner to [30] and
the sources of uncertainty are specified in table 5. The model uncertainties are relatively small
with respect to those from experimental sources except at small = and low )2, where they reach
~ 2% and ~ 6% respectively for zU and zD at = 0.01 and Q2 = 10 GeV>.

Within the functional form considered (see eq. 16), the parameterisation given in eg. 17 is found
uniquely. Possible variations within the Ay? ~ 1 region of the parameter space do not lead to
noticeably different distributions. Thus in this analysis no account is made of uncertainties
due to the choice of parameterisations. A completely different ansatz, however, may well lead
to different initial distributions, as seen, for example, in the complicated shape of x¢g chosen
in [33]. The gluon distribution determined in this analysis is consistent with the distribution
obtained previously by H1 [30] if the effects of the different heavy flavour treatments are taken
into account.

P A B C D F
xg | 0.0183 | —0.872 | 8.97 | 3450.
zU | 0.112 | —0.227 | 5.08 | 48.0 | 373.
xD | 0.142 | —0.227 | 4.93 | 23.5
zU | 0.112 | —0.227 | 7.28
xD | 0.142 | —0.227 | 4.36

Table 4: Parameters of the H1 PDF 2000 fit to the H1 data alone for the initial distributions
at Q3 = 4GeV?. Equal parameter values refect the constraints imposed by the fi t (see sec-
tion 4.2). The uncertainties and their correlations are available in [42].

source of uncertainty central value variation

2 (GeV?) 3.5 2.0 — 5.0
Q2 (GeV?) 4.0 2.0 — 6.0
ag(M2) 0.1185 | 0.1165 — 0.1205
fs, strange fraction of 2D 0.33 0.25 — 0.40
f., charm fraction of 2U 0.15 0.10 — 0.20
Me (GeV) 1.4 1.2 — 1.6
me (GeV) 4.5 4.0 — 5.0

Table 5: Model uncertainties considered in the QCD analysis.

The full curve in fig. 14 is the result [43] of the fit to H1 and BCDMS data, which gives a
2Indf= 883/(1014 — 12) = 0.88. Excellent agreement of the PDFs between the two fits is
observed. For large z, the high ? data of H1 allow distinction between up and down flavours
yielding results compatible with those from BCDMS proton and deuteron data. At low x only
HERA data are available and thus the two fits are forced to be in agreement, apart from possible
small effects due to sum rules.
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The PDFs from the H1 PDF 2000 fit are further compared in fig. 15 with recent results from
the MRST [32] and CTEQ [33] groups for two values of Q2 at 10 GeV? and 1000 GeVZ. The
H1 PDF 2000 fit is in remarkable agreement with the MRST and in particular the CTEQ anal-
yses, given the many differences in terms of the data sets used, the assumptions made and the
treatment of heavy flavours.

5.4 Extraction of the Proton Structure Function F,

The NC structure function term ¢ y¢ is obtained from the measured NC double differential cross
section according to eg. 1. It is dominated by the structure function F5 in most of the kinematic
range. The structure function F; is extracted using

F, = @(HAFQ + Ap, 4+ Ap, )7L (18)
+

Here the correction terms Az, and Ay, account for the effects of Z° exchange on £, and z £
(egs. 2-4) and Ay, originates from the longitudinal structure function FL. These corrections,
shown in table 11, are determined using the H1 PDF 2000 fit (see section 4). At high y and
Q? < 1500 GeV?, A, is sizeable and the extraction of F} in this Q? region is thus restricted
to the kinematic range y < 0.6. It is extended to higher y at larger Q2 (> 2000 GeV?) where
the predicted contribution of £} is small.

The extracted F5, using the 99 — 00 data is presented in table 11. Fig. 16 shows the F, data
using the combined 94 — 97 and 99 — 00 high Q? e* p data sets. Also shown in the figure are the
recent H1 F, data at lower Q2 [30] and structure function data from BCDMS [4] and NMC [44].
The full H1 data cover a range of four orders of magnitude in = and Q2. The H1 PDF 2000 fit
provides a good description of the data over the whole region except for the BCDMS data at
x = 0.65, as seen in fig. 11. The fit also gives a good description of the scaling violations
observed in the measurements.

5.5 Determination of the Longitudinal Structure Function F7p,

The structure function term ¢y is used to determine £ at y > 0.63 and Q* < 890 GeV?. For
statistical reasons, the measured cross sections in two neighbouring Q2 bins are combined, as-
suming that the systematic uncertainties are fully correlated. The longitudinal structure function
is then determined using the formula

- 1 - -
Fr= VB F Y afy - okl (19)
for e*p scattering which, neglecting the small electroweak contributions in the region of this

extraction, reduces to the expression

1

Fp=—
y2

[YiF — o3e) - (20)
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The extraction of F7, relies upon the extrapolation of the fit result for F5 into the high y region,
that is, to larger (Q? for given . In order to avoid a possible influence of the high y data region
on this calculation, a dedicated NLO QCD fit (H1 Low y fit) is performed to H1 data with
y < 0.35 only and the results are extrapolated using the DGLAP evolution equations. This
method was introduced in [45].

Apart from the y range restriction, the H1 Low y fit follows the same procedure as described
in section 4. It results in a x?/ndf= 417/(455 — 10) = 0.94 and agrees very well with the H1
PDF 2000 fit over the full y range. The normalisation shifts of the data sets used are found to
be within 1% of those from the H1 PDF 2000 fit.

In the extraction of the longitudinal structure function, the experimental cross sections are
slightly modified using the results of the H1 Low y fit for the renormalisation and small shifts
from the correlated uncertainties common to the low y and the high y region. The combined
HERA-I measurements of the structure function term ¢ ¢ and the extracted values of F, are
listed in table 14. The statistical precision is due directly to the cross section measurement
at high y. The systematic uncertainties arise from the measurement errors at high y and the
model uncertainties related to the extrapolation of £ from the low y to the high y region. The
correlations in the systematic uncertainties between low and high y are taken into account.

In fig. 17 the determinations of F7, at high (Q* are shown for both the e*p and the e~ p data sets.
The results from both data sets are mutually consistent and are in agreement with the H1 Low y
fit prediction for F, based on the gluon distribution derived from the scaling violations of F,
at larger x. The extreme values allowed for F, (F, = 0 and F, = F5) are clearly excluded by
the data. A model independent measurement of £, and the = dependence can, however, only
be achieved with reduced beam energies at HERA.

5.6 Measurement of the Generalised Structure Function x Fj

At high 2, the NC cross section in e*p scattering has been observed to be significantly smaller
than that in e~ p scattering [3], confirming the Standard Model expectation of vZ interference.
These earlier H1 data were used to obtain a first measurement of the generalised structure func-
tion 2 F} in the kinematic range 0.02 < z < 0.65 and 1500 GeV? < Q2 < 12000 GeV? [3]. A
similar measurement has been reported recently by ZEUS [46].

Profiting from the enlarged statistics and the reduced systematic uncertainties, the previous
measurement of = F; [3] is updated here by using the same published ¢~ p and the full e*p data
obtained by H1 at HERA-I. Fig. 18(a) shows the comparison of the e~ p and e*p data for three
different Q2 values at 1 500 GeV?, 5000 GeV? and 12 000 GeV?, together with the expectations
determined from the H1 PDF 2000 fit. The generalised structure function z F;, given in table 15,

is obtained from |

wFy = al [N — One] (21)

and is compared in fig. 18(b) with the calculation. Since at high = and low (? the expected
sensitivity to zF; is smaller than the luminosity uncertainty, the measurement is not performed
in this region. The dominant contribution to x F arises from ~Z interference, which allows
2 F57 to be extracted (eq. 4) according to 2F; 7 ~ —zF3(Q? + M32)/(a.xQ?) by neglecting
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the pure Z exchange contribution, which is suppressed by the small vector coupling v.. This
structure function is non-singlet and has little dependence on 2. This is illustrated in fig. 18(c).
The measured a:F;Z at these (Q? values can thus be averaged taking into account the small
()? dependence. The two lowest 2 bins at 2 = 0.020 and 0.032 are averaged as well. The
averaged :ch’Z, determined for a Q2 value of 1 500 GeV?, is shown in table 15 and fig. 18(d) in
comparison with the QCD fit result. The structure function x F’ Z determines both the shape and
magnitude of the valence quark distributions independent of the sea quark distributions. The
calculation from the QCD fit, in which the parton densities in the valence region are principally
constrained by the NC and CC cross sections rather than the difference between the e* NC
cross sections, gives a good description of the measurement. The averaged structure function is
integrated [47] over the measured x range, yielding

0.650
/ FJ?(z,Q* = 1500 GeV?)dx = 1.28 & 0.17(stat.) & 0.11(syst.)
0.026

which is in agreement with 1.06 4+ 0.02, as predicted from the H1 PDF 2000 fit.

5.7 TheQuark Distributions xu and xd at Large x

The flavour composition of the proton at high = may be disentangled by exploiting the NC
and CC cross section measurements. The e™p CC cross section at large x is dominated by the
d quark contribution as may be inferred from fig. 13. Similarly the w distribution dominates
the e~ p CC and e*p NC cross sections at large z. Using data points for which the xu or zd
contribution provides at least 70% of the cross section, as determined from the H1 PDF 2000
fit, the up and down quark distributions are determined locally, using the method described
in[1,27]. The extraction relies on weighting the differential cross section measurement with the
calculated local flavour contribution and is illustrated in fig. 19, where xu is the combined result
from three independent extractions from the NC e*p and CC e~ p data and xd is determined
from the CC e™p data only. This method is complementary to performing a QCD fit, since it is
based on the local cross section measurements and is less sensitive to the parameterisations and
dynamical assumptions used in the fit.

The extracted xu and xd distributions are further compared in fig. 19 with the results of the
H1 PDF 2000 fit by subtracting xc and xs from the fitted zU and xD. The two determinations
are in good agreement. They also compare well with the recent parameterisations from the
MRST [32] and CTEQ [33] groups except for zu at large x = 0.65, where the results of MRST
and CTEQ, being constrained mainly by the BCDMS data, yield a larger up quark distribution.

6 Summary

New measurements are presented of inclusive deep inelastic neutral and charged current scatter-
ing cross sections at high momentum transfers @2 > 100 GeV? from recent e*p data recorded
in 1999 and 2000 by the H1 experiment at HERA. This analysis, together with previous analy-
ses of the 1994 — 1997 e*p and 1998 — 1999 e~ p data, completes the H1 measurements of the
inclusive cross sections at high Q2 from the first phase of HERA operation.
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The accuracy of the neutral current (NC) measurements presented here has reached the level of
a few percent in the medium Q2 range of Q? < 3000 GeV2. The very high Q2 NC and charged
current (CC) data are still limited by their statistical precision, which is expected to improve in
the high luminosity phase of HERA.

For both e™p and e~ p scattering data, the region of very large inelasticity is explored, which
allows a determination of the longitudinal structure function F,(x, Q?) for the first time in the
large momentum transfer range, 110 GeV? < Q2 < 700 GeV?. The observed interference of
the photon and Z exchange, differing between e*p and e~p NC scattering at high Q?, is used
to measure the structure function z £, superseding the earlier measurement.

The NC and CC cross sections in e*p scattering are sensitive to the sums of up- and down-type
quark and anti-quark distributions, zU, D, zU and xD. Based on these quark distribution
decompositions, a novel NLO QCD analysis is performed, resulting in a first determination of
the partonic nucleon structure from inclusive DIS scattering data from H1 alone. The experi-
mental precision achieved in this analysis is about 3% and 10% respectively for U and D at
x = 0.4. The resulting parton distributions are found to be in agreement with those obtained in
an analysis also including the BCDMS muon-nucleon data at large x. The QCD analysis leads
to a good description of all the fitted NC and CC cross section data and of the derived structure
functions over more than four orders of magnitude in z and Q2.
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Figure 5: (@) The Q* dependence of the NC cross section do/dQ?, shown for the new e*p
(solid points) and previously published 94 — 97 e*p (open points) data. The error band and
full curve represent the Standard Mode expectations determined from the H1 PDF 2000 fi t at
Vs = 319GeV and /s = 301 GeV, respectively. (b) The ratios of the 94 — 97 and 99 — 00
data to their corresponding Standard Model expectations, where the normalisation shifts as
determined from thefi t are gpplied to the data (see table 3). The error band shows the Standard
Model uncertainty for \/s = 319 GeV by adding in quadrature the experimental uncertainty as
derived from the fi t and the model uncertainty (see section 5.3). In (a) and (b), the inner and
outer error bars represent respectively the statistical and total errors. The luminosity uncertainty

isnot included in the error bars.
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Figure 6: (a) The Q? dependence of the CC cross section do /dQ?, shown for the new e*p
(solid points) and previously published 94 — 97 e p (open points) data. The error band and
full curve represent the Standard Model expectations determined from the H1 PDF 2000 fi t at
Vs = 319GeV and /s = 301 GeV, respectively. (b) The ratios of the 94 — 97 and 99 — 00
data to their corresponding Standard Model expectations, where the normalisation shifts as
determined from the fi t are gpplied to the data (see table 3). The error band shows the Standard
Model uncertainty for /s = 319 GeV. The error bars and band are defi ned as for fi g. 5.
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shown for the combined 94 — 00 e*p (solid points) and 98 — 99 e~ p (open points) data The
results are compared with the corresponding Standard Model expectations determined from the
H1 PDF 2000 fi t. The error bars and bands are defi ned as for fi g. 5.
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Figure 9: Thez degpendence of the CC cross section do /dz for Q* > 1000 GeV?, shown for
the new e*p (solid points) and previously published 94 — 97 e™p (open points) data. The error
band and full curve represent the corresponding Standard Model expectations determined from
the H1 PDF 2000 fi t at\/s = 319 GeV and /s = 301 GeV, respectively. The error bars and

band are defi ned as for fi g. 5.
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Figure 11: The NC reduced cross section 5 xc(x, Q?), shown for the new e*p (solid points)

and previously published 94 — 97 e*p (open points) data. The results are compared with the
corresponding Standard Model expectations determined from the H1 PDF 2000 fit at\/s =

319 GeV (error bands) and /s = 301 GeV (full curves), respectively. Also shown are data
from H1 measured at lower (Q* (open squares), as well as from the fi xed-target experiment
BCDMS (open triangles). The BCDMS data are not used in the fi t. The error bars and bands
are defi ned as for fi g. 5.
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Figure 12: The CC reduced cross section 6cc(z, Q?), shown for the new e*p (solid points)
and previously published 94 — 97 e*p (open points) data. The results are compared with the
corresponding Standard Model expectations determined from the H1 PDF 2000 fit at\/s =
319 GeV (full curves) and \/s = 301 GeV (dashed curves), respectively. The error bars are
defi ned as for fi g. 5.
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Figure 16: The proton structure function F, shown for the combined 94 — 00 e p (solid points)
and previously published low Q? (open circles) data. The results are compared with the corre-

sponding Standard Model expectation determined from the H1 PDF 2000 fi t (error bands). The
dashed curves show the backward extrapolation of thefit to (} < Q... Also shown are the
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Figure 18: The measured NC reduced cross sections %, (x, Q%) (a), structure functions ©F;
(b) and x F; Z (c), shown for three different Q2 values. The results are compared with the cor-
responding Standard Model expectations determined from the H1 PDF 2000 fit. In (d), the
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12000 | 0.215-1073 | 1.000 | 12.0 | 6.6 | 0.9 | 13.7 09|01} 01} 00]-0.3
20000 | 0.250 - 10~ | 1.000 || 26.3 | 10.6 | 1.8 | 28.4 1.8 0.1 01} 00| —-0.6
30000 | 0.119-107* | 1.000 || 38.7 | 18.7 | 4.3 | 43.1 2.6 341 01 00]-0.7

Table 6: The NC e*p cross section doyc/dQ? fory < 0.9 after correction (k...) according
to the Standard Model expectation determined from the H1 PDF 2000 fi t for the kinematic cut
E! > 6GeV for Q* < 890 GeV?. The statistical (§,,4:), Uncorrelated systematic (5,,.), corre-
lated systematic (6..,) and total (6;.;) errors are provided. In addition the correlated systematic
error contributions from a positive variation of one standard deviation of the electron energy
error (5Z"), of the polar electron angle error (5" ), of the hadronic energy error (5"'), of the

cor cor cor

error due to noise subtraction (6~ ) and of the error due to background subtraction (52 ) are

cor cor

given. The normalisation uncertainty of 1.5% is not included in the errors.
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¥ T T ¥ ED
Q2 daC C / dQ2 kcor 5stat 5unc 5cor 6tot 5C‘ZT 5£Lor 5é\£r 537“ Agc

(GeV?) | (pb/GeV?) (%) | (%) | (%) | (%) || (%) | (%) | (%) | (%) | (%)
y<0.9

300 |0.330-1071 [ 1.40 | 94| 68| 45124 38| —-20] 1.2 |-0.1 1.4
500 | 0.198-10"1 | 1.18 || 6.9 | 4.7| 25| 87| 22| —-1.1| 08| 00| —22
1000 | 0.106-107' | 1.05 || 56| 42| 21| 73| 1.8|-09| 04| 00| —24
2000 | 0.527-1072 | 1.03 || 50| 38| 13| 64| 1.1|—-03| 06| 0.0| —5.0
3000 | 0.307-1072 | 1.03 || 53| 3.7| 1.3 | 6.6 0.8 1.0 03] 00| =71
5000 | 0.114-1072 | 1.04 || 7.2 51| 3.1 | 94| 06 27| 14| 00| —12.0
8000 | 0.347-1073 | 1.04 || 11.9 | 9.4 | 54 ]16.1| 0.3 5.1 1.8 0.0] —11.1
15000 | 0.492-107* | 1.06 || 21.7 | 16.9 | 6.5 | 28.2 || 0.2 64| 09| 00| —=15.7

Table 7: The CC e*p cross section docc/dQ? fory < 0.9 after correction (k.,,) according to
the Standard Model expectation determined from the H1 PDF 2000 fi t for the kinematic cuts
0.03 <y < 0.85 and Pr;, > 12GeV. The statistical (5.4), uncorrelated systematic (d,n.),
correlated systematic (V...) and total (6;,;) errors are also given. In addition the correlated
systematic error contributions from a positive variation of one standard deviation of the error
due to the cuts against photoproduction (5V."), of the hadronic energy error (67-"), of the error

cor cor

due to noise subtraction (5~ ) and of the error due to background subtraction (32 ) are given.

cor cor

The normalisation uncertainty of 1.5% is not included in the errors. The last column gives the
correction for QED radiative effects (AZL").

x| donc/dz (pb) | Ostat | Ounc | Ocor | ot | 0B, | 0% | R, | oN; | 0B,
Q% >1000GeV? || (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%)
y <09

0.013 0.138 - 10* 5.9 4.2 3.7 81| -0.8| —-1.0|—-15] -0.8| =3.1
0.020 0.249 - 10* 3.0 2.3 14| 4.1 03] —-1.2 0.4 0.3 | —0.6
0.032 0.215 - 10* 2.6 2.3 1.2 3.6 0.6 | —0.7 0.7 04| —0.1
0.050 0.147 - 10* 251 20 10| 3.3 0.3 | =0.7 0.5 0.4 | —-0.1
0.080 0.951 - 10° 2.4 2.1 1.1 3.4 0.5 | —0.6 0.5 0.6 0.0
0.130 0.566 - 103 2.8 | 2.2 1.1 | 3.7 09| —-0.5 0.3 0.4 0.0
0.180 0.372 - 10° 3.0 2.6 1.6 4.3 1.3 | -0.8 | —-0.3 0.5 0.0
0.250 0.212 - 103 3.3 3.4 2.1 5.2 20| -021] —-06| —-0.3 0.0
0.400 0.646 - 102 4.7 5.7 5.3 9.1 3.7 -04 1] -19 | -3.5 0.0
0.650 0.650 - 10! 9.8 | 13.3 | 11.6 | 20.2 7.4 0.8 | —4.0 | —8.1 0.0

Table 8: The NC e*p cross section doy¢/dx measured for y < 0.9 and Q* > 1000 GeV?.
The statistical (0:4:), uncorrelated systematic (9.,,,.), correlated systematic (6..,) and total (6;.:)
errors are provided. In addition the correlated systematic error contributions from a positive
variation of one standard deviation of the electron energy error (5Z), of the polar electron
angleerror (67 ), of the hadronic energy error (5" ), of the error due to noise subtraction (6~")
and of the error due to background subtraction (32 ) are given. The normalisation uncertainty
of 1.5% is not included in the errors.
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x dO'NC/dx (pb) Ostat | Ounc | Ocor Otot 5CEO:~_ 52;; 520-; 5%: 50%:
Q> >10000GeV? || (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%)
y < 0.9

0.130 0.544 - 10" 29.71 89| 1.9 | 31.0 0.1|-12|-11|-06|-0.8
0.180 0.716 - 10! 18.9 421 221195 | —-1.1|-1.9 04 0.1 ] =0.5
0.250 0.411 - 10" 19.7 | 6.3 | 1.4 20.7 1.1 ] —-0.5 0.9 0.3 | —0.1
0.400 0.162 - 10! 245 11.5 | 2.0 | 27.1 1.9 0.6 0.5 0.2 | -0.3
0.650 0.038 - 10* 316 | 30.5 | 8.4 | 448 6.3 5.1 —=2.2 | =08 0.0

Table 9: The NC e*p cross section do ¢ /dz measured for y < 0.9 and Q? > 10000 GeV?.
The statistical (0,:4:), uncorrelated systematic (9.,,,.), correlated systematic (0..,) and total (6;.:)
errors are provided. In addition the correlated systematic error contributions from a positive
variation of one standard deviation of the electron energy error (5Z), of the polar electron
angle error (62 ), of the hadronic energy error (5" ), of the error due to noise subtraction (6~")
and of the error due to background subtraction (32 ) are given. The normalisation uncertainty
of 1.5% isnot included in the errors.

X daCC/ dx (pb) kcor 6stat 6unc 5cor 5tot 6;{): 6?;« 5%: 55):
Q* > 1000 GeV* (%) | (%) | (%) | (%) || (%) | (%) | (%) | (%)

y <09
0.032 0.159 - 10° 1.05 69| 40| 23| 83| 2.1|-05 06| —04
0.080 0.946 - 102 1.02 46| 34| 1.2 59| 09| 0.5 0.7 0.0
0.130 0.623 - 102 .01 52| 37| 20| 6.7 0.3 1.2 1.5 0.0
0.250 0.194 - 102 1.00 721 58] 22| 95| 0.1 2.2 0.1 0.0
0.400 0.451 - 10! 1.06 | 16.6 | 11.3 | 6.0 | 21.0 || 0.0 49| —-3.6 0.0
0.650 0.469 - 10° 1.26 || 70.6 | 24.5 213 | 77.7| 0.0 | 92| —-19.2| 0.0

Table 10: The CCe*p crosssectiondoce/dx fory < 0.9 and @? > 1000 GeV? after correction
(ko) according to the Standard Model expectation determined from the H1 PDF 2000 fi t for
the kinematic cuts 0.03 < y < 0.85 and Pr;, > 12 GeV. The statistical (95.:), uncorrelated
systematic (6.,,.), correlated systematic (6..,) and total (6;.;) errors are also given. In addition
the corrélated systematic error contributions from a positive variation of one standard deviation
of the error due to the cuts against photoproduction (3V." ), of the hadronic energy error (5""),

cor cor.

of the error due to noise subtraction (52 ) and of the error due to background subtraction (55" )

cor cor

are given. The normalisation uncertainty of 1.5% is not included in the errors.
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Q2 . y Gne | Gotar | Soys | Stor || Sune | 6B | 60 I Seor | 6E: | 600 | s | sNT [ 6BL [ 655 [ enc/vy F | Ap | Am | AF
(Gev?) @D w |l w| w] @l ®w| w| ®] @] ®| %] ®% @ | @) | @
100 0.00131 0.750 1.450 1.6 3.6 4.0 3.5 0.6 0.0 1.2 0.4 0.5 —0.1 0.1 — 1.1 1.450 — — — —
100 0.00200 0.492 1.388 1.4 2.7 3.1 2.1 0.8 0.3 1.8 —0.3 —0.6 1.3 0.1 —0.9 — 1.388 1.442 0.1 0.0 —3.8
120 0.00158 0.750 1.404 1.8 2.7 3.3 2.7 0.3 0.0 1.1 —0.4 —0.3 0.2 0.1 — 0.9 1.404 — — — —
120 0.00200 0.591 1.338 1.5 2.5 2.9 2.0 0.6 0.3 1.5 —0.4 —0.3 0.8 0.2 —1.2 — 1.338 1.418 0.2 0.0 —5.8
120 0.00320 0.369 1.220 1.3 2.2 2.6 1.8 0.4 0.3 1.4 —0.3 —1.1 0.6 0.1 —0.5 — 1.220 1.241 0.2 0.0 —1.8
150 0.00197 0.750 1.398 2.0 2.8 3.5 2.7 0.7 0.1 1.2 —0.7 0.3 0.3 0.1 — 0.9 1.398 — — — —
150 0.00320 0.462 1.225 1.2 2.6 2.9 2.1 0.4 0.8 1.6 0.2 —0.7 1.0 0.9 —0.6 — 1.225 1.262 0.2 —0.1 —3.0
150 0.00500 0.295 1.061 1.2 2.2 2.6 2.0 0.5 0.4 1.0 —0.1 —0.6 0.4 0.7 —0.1 — 1.061 1.071 0.2 0.0 —1.0
150 0.00800 0.185 0.940 1.6 2.9 3.4 2.6 1.3 0.7 1.4 —0.6 —0.6 —0.9 —0.8 0.0 — 0.940 0.942 0.1 0.0 —0.3
200 0.00263 0.750 1.284 2.2 2.7 3.5 2.6 0.2 0.1 1.2 0.2 —0.9 0.1 0.1 — 0.7 1.285 — — — —
200 0.00320 0.615 1.242 1.9 2.5 3.1 2.2 0.2 0.2 1.2 —0.2 0.0 0.3 0.5 —1.1 — 1.242 — — — —
200 0.00500 0.394 1.091 1.3 2.5 2.8 2.1 0.2 0.8 1.4 0.0 —0.6 0.9 0.9 —0.2 — 1.091 1.111 0.2 —0.1 —1.9
200 0.00800 0.246 0.956 1.3 2.3 2.7 2.2 0.9 0.5 0.9 0.2 —0.6 0.5 0.6 0.0 — 0.956 0.961 0.2 —0.1 —0.6
200 0.01300 0.151 0.801 1.4 2.2 2.6 2.0 0.5 0.2 0.9 0.3 —0.7 0.0 0.5 0.0 — 0.801 0.802 0.2 —0.1 —0.2
200 0.02000 0.098 0.713 1.6 2.2 2.7 2.1 0.5 0.2 0.7 —0.4 —0.4 —0.4 0.2 0.0 — 0.713 0.713 0.2 —0.1 —0.1
200 0.03200 0.062 0.583 1.8 2.8 3.3 2.5 1.4 0.4 1.2 —0.7 —0.6 —0.8 0.1 0.0 — 0.583 0.583 0.2 —0.1 0.0
200 0.05000 0.039 0.516 2.0 4.3 4.7 3.4 2.6 0.1 2.6 —1.6 —0.7 —0.6 1.9 0.0 — 0.516 0.516 0.2 —0.1 0.0
200 0.08000 0.025 0.401 2.3 4.1 4.7 3.4 2.5 0.6 2.2 —1.7 —0.4 —0.6 1.3 0.0 — 0.401 0.401 0.1 0.0 0.0
200 0.13000 0.015 0.345 2.6 4.5 5.2 3.2 1.5 1.4 3.3 —0.9 —0.7 —0.9 —3.0 0.0 — 0.345 0.345 0.1 0.0 0.0
200 0.25000 0.008 0.259 3.7 7.5 8.4 4.2 0.9 2.8 6.3 0.2 —0.7 —2.0 —5.9 0.0 — 0.259 0.259 0.1 0.0 0.0
200 0.40000 0.005 0.129 4.8 12.3 13.2 4.3 1.8 1.7 11.5 —1.2 —0.8 —0.8 —11.4 0.0 — 0.129 0.128 0.1 0.0 0.0
250 0.00328 0.750 1.250 2.5 2.9 3.8 2.7 0.3 0.1 1.4 —0.3 —0.9 0.6 0.0 — 0.8 1.251 — — — —
250 0.00500 0.492 1.120 1.6 2.4 2.9 2.1 0.1 0.6 1.2 —0.1 —0.3 0.8 0.8 —0.4 — 1.120 1.155 0.3 —0.1 —3.1
250 0.00800 0.308 0.943 1.5 2.5 2.9 2.2 0.7 0.8 1.2 0.4 —0.5 0.6 0.9 0.0 — 0.943 0.951 0.3 —0.1 —1.0
250 0.01300 0.189 0.833 1.5 2.5 2.9 2.3 1.1 0.3 0.9 0.5 —0.4 —0.4 0.6 0.0 — 0.833 0.835 0.2 —0.1 —0.3
250 0.02000 0.123 0.710 1.5 2.6 3.0 2.4 1.3 0.3 1.0 0.6 —0.7 0.2 0.6 0.0 — 0.710 0.710 0.3 —0.1 —0.1
250 0.03200 0.077 0.577 1.7 3.2 3.6 2.8 2.0 0.0 1.5 1.0 —0.8 —0.4 0.6 0.0 — 0.577 0.577 0.2 —0.1 0.0
250 0.05000 0.049 0.514 1.8 3.2 3.6 2.6 1.6 0.2 1.8 0.5 —0.6 —0.4 1.6 0.0 — 0.513 0.513 0.2 —0.1 0.0
250 0.08000 0.031 0.420 1.9 3.5 4.0 2.5 1.5 0.2 2.4 1.0 —1.0 —0.5 1.9 0.0 — 0.420 0.420 0.2 —0.1 0.0
250 0.13000 0.019 0.342 2.0 4.0 4.5 3.5 2.7 1.0 1.9 1.2 —0.8 —0.8 —1.1 0.0 — 0.342 0.342 0.2 —0.1 0.0
250 0.25000 0.010 0.273 2.7 8.2 8.6 5.7 4.6 2.3 5.9 2.5 —1.1 —1.5 —5.0 0.0 — 0.273 0.273 0.1 0.0 0.0
250 0.40000 0.006 0.137 3.7 12.2 12.8 5.5 4.0 2.4 11.0 2.0 —1.0 —1.5 —10.7 0.0 — 0.137 0.137 0.1 0.0 0.0
300 0.00394 0.750 1.189 2.7 2.8 3.9 2.7 0.2 0.2 1.0 —0.2 —0.5 0.6 0.1 — 0.7 1.190 — — — —
300 0.00500 0.591 1.132 2.5 2.9 3.8 2.6 0.9 0.2 1.4 —0.9 —0.7 0.3 0.3 —0.7 — 1.133 1.186 0.4 —0.2 —4.7
300 0.00800 0.369 0.995 1.7 2.5 3.1 2.2 0.4 0.8 1.2 0.5 0.4 0.8 0.8 —0.1 — 0.995 1.008 0.3 —0.2 —1.4
300 0.01300 0.227 0.842 1.7 2.4 3.0 2.2 0.2 0.8 1.0 0.1 —0.1 0.7 0.8 0.0 — 0.842 0.845 0.3 —0.2 —0.4
300 0.02000 0.148 0.708 1.8 2.5 3.1 2.3 1.0 0.2 1.0 0.8 —0.6 0.1 0.2 0.0 — 0.708 0.708 0.3 —0.1 —0.2
300 0.03200 0.092 0.607 1.9 2.9 3.5 2.6 1.6 0.1 1.3 0.9 —0.2 —0.5 0.8 0.0 — 0.607 0.606 0.3 —0.1 —0.1
300 0.05000 0.059 0.491 2.1 3.3 3.9 2.9 2.0 0.0 1.5 1.0 —0.8 0.0 0.9 0.0 — 0.491 0.490 0.3 —0.1 0.0
300 0.08000 0.037 0.440 2.1 3.8 4.3 3.0 2.1 0.2 2.3 0.9 —0.8 —0. 2.0 0.0 — 0.440 0.440 0.2 —0.1 0.0
300 0.13000 0.023 0.355 2.2 4.1 4.7 3.7 2.9 0.9 1.8 1.6 —0.6 —0.6 —0.2 0.0 — 0.355 0.355 0.2 —0.1 0.0
300 0.25000 0.012 0.260 3.0 9.8 10.2 6.4 5.2 2.6 7.5 3.4 —1.0 —2.2 —6.3 0.0 — 0.260 0.260 0.2 0.0 0.0
300 0.40000 0.007 0.152 4.1 11.3 12.1 6.8 5.8 1.6 9.1 3.9 —1.6 —0.9 —8.0 0.0 — 0.152 0.152 0.1 0.0 0.0

Table 11: The NC e*p reduced cross section ¢ yc(z, Q?), shown with statistical (3s4:), Systematic (6s,s) and total (8,.;) errors.
Also shown are the total uncorrelated systematic (6,,,.) errors and two of its contributions: the electron energy error (5£. ) and the

unc

hadronic energy error (6" ). The effect of the other uncorrelated systematic errors is included in (5.,,.). The table also provides

unc.

the correlated systematic error (6..,) and its contributions from a positive variation of one standard deviation of the error on the

electron energy (6Z) and polar angle (5% ), of the hadronic energy error (6" ), of the error due to noise subtraction (6~") and
background subtraction (6§ CBO: ) and of the error due to charge symmetry background subtraction in the high-y analysis (6 foj ). The

normalisation uncertainty of 1.5% is not included in the errors. The NC structure function term scaled by the helicity factor Y,
onc /Y, isgiven as well as the electromagnetic structure function F, with the corrections A, Ap, and Ap, as defi ned in eg. 18.
For Q> < 2000 GeV?, the extraction of F, isrestricted to the region of y < 0.6. The table continues on the next 2 pages.
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. ane Seys | Stot 52| st | seor sBL 1 o5t || enwervy Fy | Ap,
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
0.02000 0.728 6.4 4.0 7.5 3.8 1.1 0.4 1.1 i —0.7 — 0.730 — —
0.03200 0.597 5.9 3.5 6.8 3.3 0.4 1.3 1.1 . .5 0.0 — 0.598 0.609 2.6
0.05000 0.585 5.2 2.9 6.0 2.8 0.5 0.4 0.8 0.5 .5 0.0 — 0.586 0.590 2.5
0.08000 0.427 5.5 2.9 6.2 2.7 0.3 0.5 1.0 0.3 .5 0.0 — 0.428 0.427 2.5
0.13000 0.344 6.7 3.2 7.4 3.1 0.5 0.3 1.1 0.6 .6 0.0 — 0.345 0.343 2.2 .
0.18000 0.329 7.1 4.5 8.4 3.6 1.8 0.1 2.7 1.8 .8 0.0 — 0.330 0.327 2.2 0.0
0.25000 0.226 8.0 4.9 9.4 4.2 2.3 1.1 2.7 2.3 .0 0.0 — 0.226 0.224 2.1 0.0
0.40000 0.104 12.1 9.9 15.7 6.7 3.2 3.9 7.3 3.2 .3 0.0 — 0.104 0.103 1.8 0.0
0.65000 0.0166 30.2 19.4 35.9 14.4 8.4 5.6 13.0 8.5 7 0.0 — 0.0166 0.0160 4.4 0.0
0.03200 0.642 6.4 4.2 7.7 3.9 0.5 1.5 1.6 0.6 .5 0.0 — 0.644 0.671 3.8 —2.5
0.05000 0.472 7.4 4.0 8.4 3.7 0.9 0.9 1.7 1.2 .6 0.0 — 0.473 0.481 3.8 —0.7
0.08000 0.405 6.7 3.5 7.6 3.2 0.4 0.9 1.5 —0.4 .0 0.0 — 0.406 0.408 3.5 —0.2
0.13000 0.368 7.4 4.0 8.4 3.6 1.5 0.4 1.7 1.6 .8 . 0.0 — 0.369 0.367 3.3 0.0
0.18000 0.342 8.3 3.9 9.2 3.7 0.3 0.6 1.0 0.3 .2 0.5 0.0 — 0.343 0.340 3.1 0.0
0.25000 0.233 9.0 4.9 10.2 4.4 2.1 1.0 2.3 2.2 .3 —0.3 0.0 — 0.233 0.230 3.0 0.0
0.40000 0.108 12.4 10.1 16.0 7.5 5.3 2.6 6.8 5.3 .9 —3.3 0.0 — 0.108 0.106 2.8 0.0
0.65000 0.0294 23.6 20.5 31.3 14.7 7.4 6.9 14.2 7.4 4 —11.4 0.0 — 0.0294 0.0287 3.2 0.0
0.05000 0.551 5.6 3.9 6.8 3.6 0.4 1.4 1.5 0.0 i 0.6 —0.1 — 0.553 0.585 6.3 —1.7
0.08000 0.439 6.2 4.0 7.4 3.6 0.5 1.1 1.8 1.2 .5 0.8 0.0 — 0.441 0.452 6.0 —0.4
0.13000 0.340 7.3 3.8 8.2 3.7 1.0 0.5 0.9 0.8 4 0.1 0.0 — 0.341 0.343 5.7 —0.1
0.18000 0.313 7.8 5.9 9.8 5.0 3.3 1.0 3.2 3.1 .3 0.1 0.0 — 0.314 0.312 5.3 0.0
0.25000 0.195 9.7 4.7 10.8 4.0 1.1 0.7 2.4 2.3 4 0.0 0.0 — 0.195 0.192 5.1 0.0
0.40000 0.108 11.5 6.4 13.1 5.5 2.8 1.4 3.3 2.9 .3 —1.1 0.0 — 0.108 0.106 4.6 0.0
0.65000 0.0118 28.9 16.8 33.4 12.4 6.7 5.4 11.4 6.6 .2 —8.6 0.0 — 0.0118 0.0113 5.7 0.0
0.08000 0.422 7.0 4.3 8.2 4.1 0.9 1.6 1.5 0.1 .6 0.5 —0.1 — 0.425 0.475 11.0 —1.4
0.13000 0.339 8.3 4.3 9.3 4.3 1.2 1.0 0.9 0.6 .2 0.2 0.0 — 0.341 0.359 10.4 —0.3
0.18000 0.263 9.4 4.7 10.5 4.7 2.2 0.3 0.5 —0.5 .1 0.0 0.0 — 0.263 0.269 9.9 —0.1
0.25000 0.301 9.6 9.4 13.4 9.0 7.5 1.3 2.9 2.8 .5 0.3 0.0 — 0.302 0.300 9.4 0.0
0.40000 0.130 12.3 6.1 13.7 5.9 2.5 0.3 1.2 1.1 .2 0.5 0.0 — 0.130 0.127 8.3 0.0
0.65000 0.00760 40.9 25.0 47.9 21.3 17.1 7.9 13.2 8.9 4 —7.1 0.0 — 0.00761 0.00721 8.9 0.0
0.13000 0.344 11.0 5.5 12.3 5.4 1.8 1.2 1.0 0.6 .3 0.1 —0.1 — 0.347 0.419 17.0 —0.9
0.18000 0.361 10.7 6.5 12.5 6.3 3.1 1.7 1.6 0.9 .0 0.1 0.0 — 0.364 0.406 15.8 —0.3
0.25000 0.224 13.1 7.1 14.9 6.7 3.9 0.0 2.5 2.4 4 0.7 0.0 — 0.224 0.234 15.2 —0.1
0.40000 0.0982 18.0 10.3 20.7 9.8 7.2 1.2 3.2 3.2 .3 0.0 0.0 — 0.0984 0.0971 13.4 0.0
0.65000 0.0228 28.9 28.7 40.7 26.6 22.7 6.3 11.0 8.2 .1 —4.0 0.0 — 0.0228 0.0213 14.5 0.0
0.18000 0.233 .5 5.0 20.1 4.6 2.8 0.4 2.0 —0.9 .8 0.2 —0.3 — 0.236 0.320 22.7 —0.9
0.25000 0.117 .6 7.3 24.7 7.1 6.1 1.5 1.5 1.0 .6 0.3 0.0 — 0.117 0.139 21.1 —0.3
0.40000 0.0424 11.8 37.3 11.6 11.1 0.2 2.0 1.8 7 0.1 0.0 — 0.0425 0.0441 19.1 —0.1
0.65000 0.0179 28.9 50.0 27.4 26.2 4.8 9.0 6.4 .1 —1.1 0.0 — 0.0180 0.0170 19.1 0.0
0.25000 0.106 5.2 38.7 4.8 2.9 0.6 2.0 1.1 .5 0.1 —0.4 — 0.109 0.192 29.5 —1.0
0.40000 0.0381 11.7 51.4 11.5 11.0 1.6 2.4 2.1 7 0.3 0.0 — 0.0385 0.0490 26.7 —0.2
0.65000 0.0110 38.7 80.6 38.0 37.5 1.0 7.7 5.9 .9 —0.3 0.0 — 0.0110 0.0113 26.2 0.0
0.40000 0.164 13.7 48.1 5 0.9 2.4 —0.5 .2 —0.9 — 0.168 0.319 32.4 5




1S

Q? x y || Poco/dedQ? | doc || Sstar | Osys | Otor || Ounc | e || Ocor | 6%, | 08 | 6N | 6B, || ASEP
(GeV?) (pb/GeV?) (%) | (%) | (%) | (%) | (%) || (%) | (B) | (%) | (%) | (%) (%)
300 | 0.0130 | 0.227 || 0.703 - 10° 1.184 20.3 | 11.8 | 23.5 8.2 1.5 8.6 6.7 | —2.2 | —0.3 | —4.9 0.3
300 | 0.0320 | 0.092 || 0.283-10° 1.171 13.7 5.9 | 14.9 4.6 1.3 3.8 26 | —14 1.0 | —2.1 0.4
300 | 0.0800 | 0.037 || 0.585-10"1 0.606 19.0 7.4 | 204 6.0 2.9 4.5 1.0 | —24 1.6 | —3.2 5.2
500 | 0.0130 | 0.379 || 0.570 - 10° 1.018 14.6 8.5 | 16.9 6.5 2.3 5.4 49 | —-14 04| —1.8 —4.4
500 | 0.0320 | 0.154 || 0.189 - 10° 0.829 12.1 4.8 | 13.0 3.9 1.2 2.8 1.8 | —1.1 0.8 | —1.6 —0.7
500 | 0.0800 | 0.062 || 0.465-10"1 0.511 13.4 4.4 | 14.1 4.0 04 2.0 0.4 | —0.7 1.9 | —-0.1 —-0.7
500 | 0.1300 | 0.038 || 0.194-101 0.346 25.1 7.2 1 26.1 6.4 2.2 2.9 02| -161| -2.2 | -09 -3.5
1000 | 0.0320 | 0.308 || 0.121-10° 0.609 10.5 4.7 | 11.5 3.8 1.3 2.5 19| —-1.3 04 | —0.8 —3.1
1000 | 0.0800 | 0.123 || 0.406-10~1 0.512 10.2 3.5 | 10.8 3.3 0.6 1.2 0.6 | —0.7 0.8 0.0 —0.4
1000 | 0.1300 | 0.076 || 0.162- 101 0.332 16.5 6.1 | 17.6 5.9 0.5 0.9 0.3 0.5 0.7 0.0 —-2.5
1000 | 0.2500 | 0.039 || 0.794-10~2 0.313 23.5 | 16.8 | 28.9 16.1 2.0 4.9 0.0 2.4 | —4.2 0.0 —4.9
2000 | 0.0320 | 0.615 || 0.762- 101 0.495 9.8 4.5 | 10.8 4.0 0.2 2.3 2.1 0.1 0.8 | —0.2 —5.6
2000 | 0.0800 | 0.246 || 0.228 - 101 0.370 9.9 3.8 | 10.6 3.6 0.6 1.2 0.8 | —0.8 0.4 0.0 -3.1
2000 | 0.1300 | 0.152 || 0.168 - 101 0.442 11.1 5.7 | 12.5 5.2 2.0 2.6 0.1 -1.3 2.2 0.0 —-5.0
2000 | 0.2500 | 0.079 || 0.337-102 0.171 18.4 7.3 | 19.8 6.9 0.3 2.0 00| =14 | —-1.5 0.0 —10.0
3000 | 0.0800 | 0.369 || 0.201 - 1071 0.407 8.7 4.3 9.7 4.2 1.2 1.4 0.9 0.9 0.2 0.0 —-7.5
3000 | 0.1300 | 0.227 || 0.107-101 0.354 10.7 4.5 | 11.6 3.8 1.1 2.1 0.2 1.2 1.7 0.0 -3.9
3000 | 0.2500 | 0.118 || 0.251 - 102 0.159 16.3 6.1 | 174 6.0 04 1.1 0.1 1.0 | —04 0.0 —5.7
3000 | 0.4000 | 0.074 || 0.531-103 0.054 37.8 | 17.1 | 41.5 || 14.2 3.9 9.6 0.0 1.8 | —94 0.0 —12.6
5000 | 0.0800 | 0.615 || 0.842-10~2 0.250 13.8 8.1 | 16.0 5.9 1.8 5.6 1.4 3.8 3.8 0.0 —13.0
5000 | 0.1300 | 0.379 || 0.530- 102 0.256 12.3 5.6 | 13.5 5.1 2.5 2.3 0.4 2.2 0.5 0.0 —13.8
5000 | 0.2500 | 0.197 || 0.192- 102 0.179 14.2 5.7 | 15.3 5.3 3.0 1.7 0.1 1.4 0.9 0.0 -9.8
5000 | 0.4000 | 0.123 || 0.261-10"3 0.039 33.3 | 104 | 34.9 9.5 4.0 4.6 0.0 4.5 | —-0.5 0.0 —4.6
8000 | 0.1300 | 0.606 || 0.178 - 102 0.137 20.3 | 12.6 | 23.9 114 5.1 5.4 0.6 4.7 2.7 0.0 —-13.0
8000 | 0.2500 | 0.315 || 0.903-10"3 0.134 17.3 | 11.0 | 20.5 9.5 8.1 5.8 0.0 5.3 2.2 0.0 —8.6
8000 | 0.4000 | 0.197 || 0.152-103 0.036 40.8 | 26.0 | 484 || 25.2 | 14.5 6.6 0.0 6.6 0.2 0.0 —14.8
15000 | 0.2500 | 0.591 || 0.126- 103 0.041 37.8 | 16.4 | 41.2 15.0 | 13.6 6.8 0.3 6.5 1.7 0.0 —-16.0
15000 | 0.4000 | 0.369 || 0.117-10~3 0.061 28.8 | 23.2 | 37.0 || 22.0 | 13.4 7.6 0.0 7.4 1.3 0.0 —14.7

Table 12: The CC e*p double differential cross section d*occ/dxdQ? and the structure function term ¢, shown
with statistical (054:), Systematic (65,s) and total (6,.,.) errors. Also shown are the total uncorrelated systematic error
(6.nc) and its contribution from the hadronic energy error (5" ). The effect of the other uncorrelated systematic errors

unc.

isincluded in (6.,.). In addition the correlated systematic error (§..,) and its contributions from a positive variation
of one standard deviation of the error due to the cuts against photoproduction (5."), of the hadronic energy error

cor

(5""), of the error due to noise subtraction (5" ) and of the error due to background subtraction (62 ) are given. The

cor cor cor

normalisation uncertainty of 1.5% is not included in the errors. The last column gives the correction for QED radiative
effects (ASEP).




Q? x Fne | Stor | stat || Sune | 6B,. | 6o || Geor | 6EL | 805 | shT [ sNT | sBT | 85
(Gev?) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
100 0.00130 1.368 7.0 4.0 5.5 1.5 0.2 1.2 —0.7 —1.0 0.5 0.4 — —0.9
100 0.00200 1.293 5.3 3.4 3.3 0.5 0.3 2.4 0.5 —1.8 0.9 0.6 —1.1 —
120 0.00160 1.342 6.6 4.2 4.8 0.1 0.2 1.7 —0.3 —1.5 0.6 0.3 — —0.7
120 0.00200 1.325 5.0 3.3 3.2 0.5 0.2 2.1 —0.4 —1.4 —0.3 0.3 —1.4 —
120 0.00320 1.198 4.8 3.1 3.3 1.1 0.4 1.9 0.8 —1.7 0.5 0.5 —0.3 —
150 0.00200 1.339 6.7 4.4 4.8 0.9 0.2 1.2 0.8 —0.8 0.5 0.4 — —0.6
200 0.00260 1.188 7.1 4.9 4.8 0.1 0.4 1.9 0.4 —1.7 0.6 0.4 — —0.6
250 0.00330 1.126 7.9 5.7 4.9 0.6 0.2 2.1 1.0 —2.0 0.5 0.3 — —0.7
300 0.00390 1.068 8.0 6.1 4.9 0.2 0.2 1.4 —0.4 —1.3 0.4 0.3 — —0.7
400 0.00530 1.101 8.3 6.4 5.1 0.7 0.3 1.5 —0.6 —1.4 0.3 0.3 — —0.6
500 0.00660 1.099 8.7 6.9 5.2 0.2 0.3 1.0 —0.3 —0.8 0.5 0.4 — —0.2
650 0.00850 1.056 9.9 8.2 5.6 1.0 0.0 0.5 —1.0 —0.2 —0.2 0.2 — —0.4
800 0.01050 0.938 10.9 9.2 5.9 0.4 0.3 1.1 —0.6 —1.1 0.3 0.0 — —0.1

Table 13: The NC e~ p reduced cross section o yc(x, Q*) from the high-y analysis, shown with
statistical (65:,:) and total (6,.;) errors. Also shown are the total uncorrelated systematic (6.,,..)
error and two of its contributions: the electron energy error (5% ) and the hadronic energy

unc.

error (5" ). The effect of the other uncorrelated systematic errors is included in (5,,.). In

unc.

addition the correlated systematic error (6..,) and its contributions from a positive variation of
one standard deviation of the electron energy error (52 ), of the polar electron angleerror (52),

cor cor

of the hadronic energy error (5""), of the error dueto noise subtraction (62" ), of theerror dueto

cor cor

background subtraction (62 ) and of the error due to charge symmetry background subtraction

cor

) fofn) are given. The normalisation uncertainty of 1.8% is not included in the errors. All e~ p

datanot previously reported in [3] are given, including the new high vy data and three data points
at Q%> = 100 and 120 GeV? from the nominal analysis phase space.

Q2 Y Yy ¢NC’ FL 6stat 5sys 5tot
(GeV?)

e~ p data
110 0.00144 | 0.75 | 1.440 | 0.298 | 0.074 | 0.133 | 0.154
175 0.00230 | 0.75 | 1.346 | 0.298 | 0.077 | 0.113 | 0.139
280 0.00368 | 0.75 | 1.162 | 0.390 | 0.085 | 0.099 | 0.132
450 0.00591 | 0.75 | 1.164 | 0.117 | 0.097 | 0.101 | 0.140
700 0.00919 | 0.75 | 1.072 | 0.042 | 0.117 | 0.098 | 0.153
etp data
110 0.00144 | 0.75 | 1.518 | 0.198 | 0.032 | 0.083 | 0.092
175 0.00230 | 0.75 | 1.426 | 0.164 | 0.038 | 0.064 | 0.076
280 0.00368 | 0.75 | 1.292 | 0.171 | 0.041 | 0.057 | 0.072
450 0.00591 | 0.75 | 1.163 | 0.133 | 0.045 | 0.052 | 0.070
700 0.00919 | 0.75 | 1.037 | 0.096 | 0.053 | 0.062 | 0.082

Table 14: The NC structure functionterm ¢y (z, Q*) and the structure function F,, shown with
its statistical (95:q:), Systematic (65,s) and total (9,,,) absolute error. The tota error includes
a contribution arising from the model uncertainties in the calculated F,. These are obtained
by varying the assumptions of the H1 Low y QCD fit as listed in table 5. The luminosity
uncertainties of thee*p and e~ p data sets are included in the systematic error.
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Q2 x .I'Fg 6smt 6sys 6tot
(GeV?)
1500 | 0.020 0.052 | 0.036 | 0.025 | 0.044
1500 | 0.032 0.074 | 0.032 | 0.026 | 0.042
1500 | 0.050 0.076 | 0.039 | 0.028 | 0.048
1500 | 0.080 0.067 | 0.050 | 0.035 | 0.061
5000 | 0.050 0.088 | 0.037 | 0.024 | 0.044
5000 | 0.080 0.150 | 0.031 | 0.020 | 0.037
5000 | 0.130 0.160 | 0.036 | 0.023 | 0.043
5000 | 0.180 0.099 | 0.041 | 0.025 | 0.048
5000 | 0.250 0.089 | 0.049 | 0.039 | 0.062
5000 | 0.400 0.027 | 0.045 | 0.034 | 0.057
5000 | 0.650 | —0.008 | 0.015 | 0.011 | 0.019
12000 | 0.180 0.149 | 0.077 | 0.021 | 0.080
12000 | 0.250 0.113 | 0.053 | 0.017 | 0.056
12000 | 0.400 0.035 | 0.038 | 0.019 | 0.043
12000 | 0.650 | —0.007 | 0.015 | 0.011 | 0.018
Q? x Fy 7| Ostar | Osys Otot
(GeV?)
1500 | 0.026 0.59 | 0.22 | 0.17 | 0.28
1500 | 0.050 0.38 | 0.13 | 0.09 | 0.16
1500 | 0.080 0.57 | 0.12 | 0.08 | 0.14
1500 | 0.130 0.61 | 0.14 | 0.09 | 0.16
1500 | 0.180 0.37 | 0.12 | 0.06 | 0.13
1500 | 0.250 0.29 | 0.11 | 0.05 | 0.12
1500 | 0.400 0.09 | 0.08 | 0.05 | 0.09
1500 | 0.650 | —0.02 | 0.03 | 0.02 | 0.04

Table 15: The upper part of the table shows the generalised structure function x F with statisti-
ca (6s5iqt), Systematic (0,,,) and total (0,,;) absolute errors. The luminosity uncertainties of the
etp and e p data are included in the systematic error. The lower part of the table shows the
structure function x Fy/ Z obtained by averaging over different Q2 values and transforming to a

Q? vaueat 1500 GeV?2.
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