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“Science is an intellectual dead end, you know?

It’s a lot of little guys in tweed suits cutting up frogs on foundation grants.”

Miles Monroe in: Woody Allen, The Sleeper, 1973
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��������! �� �
� %������ 
�����������! all phenomena are described by the interactions

of elementary particles due to four fundamental forces: gravity and the electromagnetic, the

weak and the strong interactions. The properties of gravity are described by the general

theory of relativity. The electromagnetic, the weak and the strong interactions are described

in the framework of the “Standard Model” of particle physics.

In this thesis we perform tests of Quantum Chromodynamics (QCD), the theory of the

strong interaction, which describes the interactions of quarks and gluons due to their color

charge. QCD does, however, not predict the absolute strength of the strong interaction, the

“strong coupling constant” αs. The value of αs enters the theory as a parameter which has to

be determined experimentally. Furthermore available calculational techniques do not allow

to predict the momentum distributions of quarks and gluons inside a composite particle as

the proton. These “quark and gluon density functions” have therefore also to be obtained

from experiment.

The direct determination of αs and the gluon and quark densities in the proton is the

subject of the present work.

#��%���������� ��%����%����� ���������! �1%�������� have played an important role in

the understanding of the structure of the proton and in establishing QCD as the theory

of the strong interaction [1]. Compared to earlier experiments with fixed proton targets

the electron-proton collider HERA with its much larger lepton-proton center-of-mass energy

allows to explore the proton structure at a significantly higher resolution.

The inclusive electron-proton cross section is directly sensitive to the quark densities in

the proton, but allows only indirect conclusions on αs and the gluon content. Observables

which are directly sensitive to αs and the gluon density in the proton are the multi-jet cross

sections, i.e. the production rates of events in which the final state contains (besides the

proton remnant) more than one collimated spray of hadrons, so called “jets”.

1



2 Introduction

�
����2�� ����� �������� in deep-inelastic scattering were measured for the first time by

the E665 collaboration in a fixed target experiment [2]. The high center-of-mass energy at

HERA produces more pronounced jet structures and provides a clean testing ground for

QCD dynamics in analyses of the hadronic final state. In previous analyses at HERA the

production rates of dijet events in deep-inelastic scattering at large momentum transfers Q2

were used to determine the strong coupling constant αs [3, 4, 5].

��� ��� �� ���� ������ is to extend these analyses regarding both the experimental mea-

surement and the scope of the QCD analysis. A large variety of jet observables is measured

as a function of kinematic and jet specific quantities using different jet algorithms. The pre-

dictions of perturbative QCD are tested in inclusive jet, in dijet, in three-jet and in four-jet

production. The internal structure of jets is studied in a dijet event sample.

In a QCD analysis of the inclusive jet and the dijet cross sections we determine αs and

study its “running” as a function of the transverse jet energy. The inclusion of H1 structure

function data with their direct sensitivity to the quark densities provides the opportunity

to perform a consistent direct determination of the gluon density simultaneously with the

quark densities in the proton. Since both data sets are measured by one experiment the

correlated experimental uncertainties can fully be taken into account. We perform the first

simultaneous direct determination of αs, the gluon and the quark densities in the proton.

��� ������ is organized in three parts.

❍ The first part is devoted to the theoretical basis of the analysis.

In chapter 1 we describe the theoretical framework in which αs and the parton density

functions are defined and discuss in what way different processes in positron-proton

scattering are sensitive to these parameters. The concept of jet observables is intro-

duced in chapter 2. We give the exact definitions of the jet algorithms and motivate

the choice of the jet phase space used in the analysis. Properties of the theoretical pre-

dictions are studied in chapter 3 to identify those phase space regions and observables

for which theoretical uncertainties are smallest.

❍ The second part contains all details of the experimental work.

A brief description of the H1 detector is given in chapter 4 together with the experi-

mental methods applied in the analysis. In chapter 5 we discuss the data selection and

provide numerous control distributions which are the basis of the unfolding of the data

as performed in chapter 6. All experimental results are presented in chapter 7 where

they are compared to theoretical predictions.

❍ In part three we interpret the measurements in the framework of QCD.

An outline of the QCD analysis and a description of the technical details of the fit-

ting procedure is given in chapter 8. In chapter 9 we perform QCD fits in which we

determine αs and the gluon and quark densities in the proton.



Introduction 3

�����	�*

Throughout this thesis we set � = c = 1.

The results of this work fall in two categories: observables (e.g. jet cross sections) and

theoretical parameters (e.g. the gluon density in the proton). Correspondingly we will care-

fully distinguish between the usage of the words “measurement” and “determination” (or

“extraction”).

Observables are measurable quantities which correspond to properties of phenomena in

the physical world. Once they are (correctly) measured they constitute facts, which have to

be described by any physical theory which claims to describe nature.

Theoretical parameters, on the other hand, are quantities which are defined (and have

a meaning) only in a given theoretical framework. In this framework they are related to

observables and can therefore be determined (or extracted) in a theoretical analysis of the

observables. Once, however, the corresponding theory is disproven, the results of the para-

meters loose their relevance, whereas the observables measured are for eternity ...
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In this chapter we give an overview of the general structure of cross sections in perturbative

Quantum Chromodynamics (pQCD) and discuss the definitions of the strong coupling con-

stant αs and the parton density functions. We also introduce the kinematic variables and

the structure functions needed to describe deep-inelastic scattering.

This chapter does not contain any new results. All information presented is taken from

textbooks [6, 7, 8, 9, 10], lecture notes [11, 12] or other literature (as cited).

��� ��� ���	
� �	
���
� �	
���
� αs � ��
	���������	


Quantum Chromodynamics (QCD), the theory of the strong interaction, describes the in-

teractions of quarks and gluons. Predictions for scattering processes are obtained by per-

turbative methods using the Feynman rules which can be derived from the Lagrangian den-

sity. Any cross section is then computed as a power series in the strong coupling constant

αs ≡ g2s/4π where gs is the gauge coupling of QCD. The contributions from each order can

be visualized by so-called Feynman diagrams, each of which is a combination of a number

of fundamental vertices. In Fig. 1.1 the fundamental vertices of QCD are displayed. Quarks

are represented by straight solid lines and gluons by helixes. Each vertex of Fig. 1.1 a) and

b) in a Feynman diagram contributes one factor of
√
αs and each vertex 1.1 c) a factor of αs

to the corresponding matrix element. The cross section of the process is then calculated as

the absolute value squared of the sum of all contributing matrix elements, integrated over

the available phase space.

(a) (b) (c)

Figure 1.1: The fundamental vertices of QCD

7



8 Basic Theoretical Concepts

1-loop 2-loop 3-loop 4-loop

Figure 1.2: Loop corrections to the gluon propagator in QCD Feynman diagrams

Perturbative calculations in leading order (i.e. the lowest order in αs contributing to the

observable) contain only “tree-level” diagrams without internal loops. At higher orders in αs

any observable receives contributions from diagrams including loops as displayed in Fig. 1.2.

The loop integrals in these graphs are performed over all (internal) loop momenta P . These

integrals are divergent due to the contributions from P → ∞. These so-called ultraviolet

(UV) divergences can be made temporarily finite by some “regularization” procedure, e.g. by

the introduction of an ultraviolet momentum cut-off or by dimensional regularization [13].

The regularized divergences are then removed by absorbing them into the definition of the

coupling strength via a “renormalization procedure”. This is done according to a specific (but

arbitrary) prescription, which introduces a new dimensional scale μr (the “renormalization

scale”). The “modified minimal-subtraction scheme” (MS scheme) [14] is widely used for

this purpose and will also be employed in all calculations in this thesis.

The renormalization scale can be regarded as the momentum at which the subtractions

which remove the UV divergences are performed. It follows that the renormalized coupling

αs(μr) as well as the perturbative coefficients in the power series for the matrix elements

depend on the choice made for μr. However, since μr is an arbitrary parameter, the value

of any physical observable R (if calculated to all orders in αs) has to be independent of μr.

This is expressed mathematically by the “renormalization group equation”

μ2
r

∂R

∂μ2
r

+ μ2
r

∂αs

∂μ2
r

∂R

∂αs
= 0 . (1.1)

From (1.1) follows a differential equation in which the μr dependence of αs(μr) is given by

the β function of QCD which can be expanded as a power series in αs(μr)

∂a

∂ lnμ2
= β(a) = −β0a2 − β1a

3 − β2a
4 − β3a

5 +O(a6) . (1.2)

with a(μr) ≡ αs(μr)/(4π). The coefficients β0 [15] and β1 [16] are universal (i.e. scheme

independent). The results for β2 [17] and β3 [18] are available for the MS scheme. One finds

β0 = 11− 2

3
nf ,

β1 = 102− 38

3
nf ,
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β2 =
2857

2
− 5033

18
nf +

325

54k
n2
f ,

β3 =

(
149753

6
+ 3564 ζ3

)
−
(
1078361

162
+

6508

27
ζ3

)
nf

+

(
50065

162
+

6472

81
ζ3

)
n2
f +

1093

729
n3
f . (1.3)

Here ζ is the Riemann zeta-function (ζ3 = 1.202056903 · · ·) and nf is the number of active

quark flavors1. To simplify the notation we define bN ≡ βN/β0 (N = 1, 2, 3). Integrating

(1.2) leads to [19]

ln
μ2

Λ2
=

∫
da

β(a)

=
1

β0

[
1

a
+ b1 ln a+ (b2 − b21)a+

(
b3
2
− b1b2 +

b31
2

)
a2
]
+
b1
β0

ln β0 . (1.4)

The integration introduces a constant Λ, the so-called asymptotic scale parameter, which

specifies the value of the renormalization scale μr at which αs(μr) diverges.

Using (1.4) one can determine the value of αs at any scale μr if either Λ or, alternatively,

the value of αs at an arbitrary scale is known. The procedure of using the Λ parameter (which

is typically of the order of 200 – 300MeV) is nowadays disfavored since it is not uniquely

defined beyond leading order [20] and its value depends on the number of active quark flavors.

Instead it has become conventional to quote the value of αs in the MS scheme at the scale

μr = MZ = 91.187GeV [21], the mass of the Z0 boson which is very precisely measured

(±0.007GeV). This value of the scale is safely in the perturbative region (αs(MZ) � 1) and

far away from the quark thresholds (mb �MZ � mt).

To eliminate Λ and to obtain αs(μr) as a function of αs(MZ) one may set μr = MZ in

(1.4) and subtract this from (1.4) at an arbitrary scale μr. This yields

a(μr) =
a(MZ)

1 + a(MZ)L
, (1.5)

with L = β0 ln
μ2
r

M2
Z

+ b1 ln
a(MZ)

a(μr)
+ (b2 − b21)(a(MZ)− a(μr))

+

(
b3
2
− b1b2 +

b31
2

)
(a2(MZ)− a2(μr)) .

For a given value of αs(MZ) the value of αs(μr) can now be evaluated using two different

procedures. One can obtain an approximate solution (at N -loop accuracy) by iteratively

solving (1.6) and discarding the terms of O(1/ lnN (μ2
r/Λ

2)). Alternatively one may solve

(1.6) exactly using numerical methods. The latter method was used in a recent determination

of the world average value of αs(MZ) [22] and will also be used in this thesis.
1In this thesis we always work in phase space regions where the process relevant energy scales are above

the mass of the bottom quark (mb � 4.5GeV) and below the mass of the top quark (mt � 173GeV), and

hence nf = 5 is used in all cases.
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Figure 1.3: Solutions of the renormalization group equation (MS scheme, nf = 5). On the

left the running of αs(μr) is displayed for different values of αs(MZ) using the 4-loop formula.

The right plot shows the running of αs(μr) in different approximations of the renormalization

group equation.

�������� �� �	
 �
���
��������� ����� ��������

The basic property of the solution (1.6) of the renormalization group equation manifests

itself already at 1-loop accuracy (i.e. b1 = b2 = b3 = 0). αs(μr) depends logarithmically

on μr (“the running coupling”) and approaches zero as μr becomes large. At large ener-

gies where αs(μr) � 1 the quarks and gluons can therefore be considered as free particles

whose interactions are calculable in perturbation theory as a power series in αs. This is the

“asymptotic freedom” of QCD.

In Fig. 1.3 we display the running of αs in the range 5 < μr < 130GeV. The left plot

shows the 4-loop solution for different values of αs(MZ). A 7% difference at μr =MZ leads

to an increased difference of 14% at μr = 5GeV. On the right we compare the solutions of

(1.6) in 1-, 2-, 3- and 4-loop accuracy. The 1-loop result deviates from the others, but the

differences between the 2-, 3- and 4-loop solutions are too small to be visible in the plot. We

therefore display the ratios of the different curves in Fig. 1.4. The left plot shows the ratio

of the 2-, 3- and 4-loop curves to the 1-loop solution and the right plot the corresponding

ratios to the 4-loop result. While the corrections to the 1-loop result are significant at small

scales (5% at μr = 5GeV) the higher order corrections to the 2-loop result are negligible (5

per mil at μr = 5GeV).
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Figure 1.4: A comparison of the 1-, 2-, 3- and 4-loop solutions of the renormalization group

equation for αs(MZ) = 0.119. Shown are the ratios of the different results to the 1-loop result

(left) and to the 4-loop result (right).

�	
 ����
�� ����� ��
���
 ����
 �� αs(MZ)

The value of αs(MZ) is a universal (i.e. process independent) parameter in QCD which has to

be determined from experiment. The status of αs(MZ) determinations in different processes

has been summarized by the Particle Data Group throughout the last decade (see Fig. 1.5).

Recent reviews in [20, 23, 21, 22] have determined a world average value of

αs(MZ)world average = 0.118± 0.004 W.J. Stirling (1997) [20] ,

= 0.119± 0.005 S. Catani (1997) [23] ,

= 0.119± 0.002 Particle Data Group (1998) [21] ,

= 0.119± 0.004 S. Bethke (1998) [22] .

The central values and the estimated uncertainties are similar for all authors. Only the

Particle Data Group obtains a significantly smaller uncertainty as a consequence of not taking

into account the correlations between the theoretical uncertainties of the single values. The

analysis by S. Bethke [22] contains the most recent experimental results and studies regarding

the influence of the statistical methods used in the averaging procedure on the result. In this

thesis we will therefore refer to this value and its uncertainty as the world average value.
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Figure 1.5: The development of the world average value of αs(MZ) over the last decade as

determined by the Particle Data Group [21].
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At short distances (corresponding to high energies) where αs(μr) � 1, the interactions

of single partons (i.e. quarks and gluons) can be calculated in perturbative QCD whereas

at macroscopic distances partons appear only in bound states of colorless hadrons (“color

confinement”). The interactions of partons in a hadron take place at long distances (i.e. low

energies) where perturbation theory is no longer applicable. The momentum distributions

of partons inside a hadron can therefore not be computed from first principles but have to

be parameterized by so-called “parton density functions” f̃a/h(x) which give the probability

density of finding a parton a inside the hadron h carrying a fraction x of the hadron’s

(longitudinal) momentum. Any cross section involving partons in the initial state is then

given by the product of the partonic cross section and the parton density function, summed

over all contributing partons and integrated over all values of x.

This procedure is called “factorization” of the perturbative (short-distance) and the non-

perturbative (long-distance) process. The non-perturbative contributions are factorized into

the parton density functions which have to be determined from experiment. The parton

density functions specify a universal (i.e. process independent) property of the corresponding

hadron. Once determined in a single process they can be used as input for perturbative

calculations of any other process involving this hadron.

The scattering of a virtual photon γ� and a quark q in the proton is described in lowest

order by the diagram in Fig.1.6 a). The higher order corrections to this process include graphs

as the one shown in Fig.1.6 b) with additional gluon emissions. The contributions from these

diagrams have to be integrated over all transverse momenta k⊥ of the gluons relative to the
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γ* (a)

∼
fq/p(x)

∼
σγ*q

γ*

k⊥ > μf

k⊥ < μf

(b)

fq/p(x,μf)
μf

σγ*q (μf)

Figure 1.6: Feynman diagrams for the scattering of a virtual photon and a quark in lowest

order (left) and in higher orders αs (right). The redefinition of the quark density function

absorbs all gluon emissions with relative transverse momenta k⊥ < μf into the quark density.

This introduces a dependence on the chosen factorization scale μf in both, the quark density

fa/p(x, μf ) and the partonic cross section σγ�q(μf ) of the hard scattering process.

initial quark and become divergent at k⊥ → 0, i.e. for collinear gluon emissions. These

divergences are not cured by renormalization.

It is, however, possible to extract the collinear divergences mentioned from the perturba-

tive coefficients to all orders in perturbation theory as universal factors which can be absorbed

into a redefinition of the parton density functions according to a given prescription, called

“factorization scheme”. This procedure introduces a new scale μf (the factorization scale)

corresponding to the transverse momentum k⊥ below which parton emissions are included

in the (redefined) parton density functions fa/h(x, μf).

The parton density functions are now only defined within the given scheme and depend,

just like the perturbative coefficients, on the choice of μf . A common factorization scheme

which will also be used in this thesis is again the MS scheme. In analogy to the renormal-

ization group equation (1.1) there is an equation expressing that any physical observable

(when calculated to all orders in αs) is independent of the choice of μf . This relation, known

as the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation [24, 25], is a system of

coupled differential equations describing the μf dependence of the parton density functions

μf
∂

∂μf

(
qi(x, μf)

g(x, μf)

)
=
αs

2π

∑
qj ,q̄j

∫ 1

x

dη

η

⎛
⎝ Pqi,qj

(
x
η
, αs

)
Pqi,g

(
x
η
, αs

)
Pg,qj

(
x
η
, αs

)
Pg,g

(
x
η
, αs

)
⎞
⎠( qi(η, μf)

g(η, μf)

)
,

(1.6)

where g is the gluon density and qi are the quark densities for flavor i. We have used the

short-hand notation αs ≡ αs(μ). The DGLAP splitting functions (or “evolution kernels”)

Pab(z) are calculable as power series in αs

Pqiqj(z, αs) = δijP
(0)
qq (z) +

αs

2π
P (1)
qiqj

(z) + · · · ,
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P(0)
qq (z)

z

1-z

P(0)
qg (z)

z

1-z

P(0)
gq (z)

z

1-z

P(0)
gg (z)

z

1-z

Figure 1.7: The Feynman diagrams of the leading-order splitting functions

Pqg(z, αs) = P (0)
qg (z) +

αs

2π
P (1)
qg (z) + · · · ,

Pgq(z, αs) = P (0)
gq (z) +

αs

2π
P (1)
gq (z) + · · · ,

Pgg(z, αs) = P (0)
gg (z) +

αs

2π
P (1)
gg (z) + · · · . (1.7)

The diagrams corresponding to the leading order contributions P
(0)
ab (z) are displayed in

Fig. 1.7. These splitting functions can be interpreted as the probability densities of finding

a parton a in a parton b with a longitudinal momentum fraction z of the parent parton

and a transverse momentum much less than μf [25]. The perturbative expansion of the

splitting functions has been calculated to next-to-leading order (O(αs)) [26] (the analytical

expressions are e.g. given in [10]). The DGLAP equations (1.6) are usually solved by direct

numerical integration in x space [27] or analytically in moment space [28].

While the x dependence of the parton distributions is not predicted by perturbative

QCD, the μf dependence is given by the DGLAP equations (1.6), in a similar way as the

running of αs is described by the renormalization group equation. However, the evolution

of a single parton density function involves mixing with other parton flavors and therefore

requires the full knowledge of all parton distributions over the entire range 0 ≤ x ≤ 1.

�	
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The best knowledge of the parton density functions of the proton is obtained in global fits

to a large number of data sets which are separately sensitive to different parton flavors or to

different linear combinations of parton flavors. In these fits the x dependence of the single

parton distributions is parameterized by flexible functional forms (over the whole range

0 ≤ x ≤ 1) at a “starting scale” μf,0 (typically chosen in the range 1 ≤ μf,0 ≤ 2GeV).

These parton densities are evolved by the DGLAP equations to larger μf where they are

used to compute the perturbative cross sections which are then compared to the data. The

parameters of the functional forms are iteratively adjusted in a χ2 minimization procedure

to give an optimized description of all data sets.

The most recent results have been obtained in the fits by the CTEQ collaboration [29] and

by the groups MRST [30] and GRV [31]. These results are available in the form of tables over

the whole x and μf range along with computer code to perform the interpolations between
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Figure 1.8: The x dependence (left) and the μf dependence (right) of parton density

functions obtained in global fits.

the single values. The global fits give parameterizations of the world’s best knowledge of

the parton distributions. However, a determination of the uncertainties of these results,

important to estimate the uncertainties of the theoretical predictions for other processes, is

still missing.

In Fig. 1.8 parton distributions obtained from recent global fits are displayed. In addition

to the gluon density xg(x, μf) we have plotted two linear combinations of the quark densities

(a motivation for these choices will be given later in section 8.2.2) defined as

xΣ(x, μf ) ≡ x
∑
a

(qa(x, μf) + q̄a(x, μf)) ,

xΔ(x, μf ) ≡ x
∑
a

e2a(qa(x, μf) + q̄a(x, μf)) ,

where the sums run over all quark flavors a and ea denotes the electrical charge of the quarks.

Fig. 1.8 shows the x dependence of these parton distributions at fixed μf (left) and the μf

dependence at four different x values (right).
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l l’

Q2 = -q2

p

xBj

Figure 1.9: Diagrams of different processes in deep-inelastic lepton-proton scattering: The

Born process (left), the QCD-Compton process (middle) and the boson-gluon fusion process

(right).
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The deep-inelastic scattering process of a charged lepton and a proton proceeds either via

the exchange of a photon, Z0 (“neutral current”) or W± boson (“charged current”). In the

following we discuss the neutral current reaction which is at lowest order described by the

Feynman diagram shown in Fig. 1.9 (left) where l (l′) denotes the four-momentum of the

incoming (scattered) lepton and p the four-momentum of the proton. At a fixed center-of-

mass energy
√
s =

√
(l + p)2 the kinematics is completely given by two variables. Usually

these are selected from the four-momentum transfer Q2, the Bjorken scaling variable xBj and

the inelasticity variable y defined as2

Q2 = −q2 ≡ −(l − l′)2 , xBj ≡ Q2

2 p · q , y ≡ p · q
p · l . (1.8)

The double differential cross section can be decomposed into a Born cross section and two

factors which include the QED and the weak radiative corrections from higher orders

d2σNC

dxBj dQ2
=

(
d2σNC

dxBj dQ2

)
Born

(
1 + δQED

NC (xBj, Q
2)
) (

1 + δweakNC (xBj, Q
2)
)
. (1.9)

The double differential Born cross section can be written as(
d2σNC

dxBj dQ2

)
Born

=
2πα2

xBjQ4
φNC(xBj, Q

2) , (1.10)

where α is the electromagnetic coupling constant and φNC is a linear combination of structure

functions which are used to parameterize the structure of the proton

φNC(xBj, Q
2) = Y+F̃2(xBj, Q

2) − Y− xBjF̃3(xBj, Q
2) − y2F̃L(xBj, Q

2) . (1.11)
2In this thesis the Bjorken scaling variable xBj is always written with a subscript to distinguish it from

the “proton momentum fraction” x which appears in the formulae for the parton density functions. While

the Bjorken scaling variable is an observable event property, the variable x is (as described in section 1.2)

only defined in a theoretical calculation within a given factorization scheme.
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The helicity dependences of the electroweak interactions are contained in the functions Y± =

1 ± (1 − y)2. The structure function F̃2 receives contributions from γ exchange, from γ/Z0

interference and from Z0 exchange while F̃3 has only contributions from γ/Z0 interference

and Z0 exchange. In the kinematic region Q2 � M2
Z the latter contributions are, however,

negligible and F̃2 is reduced to the electromagnetic structure function F2. Defining R ≡
FL/(F2 − FL) the neutral current cross section can be written as(

d2σNC

dxBj dQ2

)
Born

=
2πα2

xBjQ4

[
2− 2y +

y2

1 +R

]
F2(xBj, Q

2) . (1.12)

It is seen that the structure function F2(xBj, Q
2) is not directly related to the observable

cross section, but can only be extracted under an assumption for R. This initial assumption

may lead to a bias in a further QCD analysis of the structure function data. To avoid this

bias one can define a “reduced cross section” σ̃NC(xBj, Q
2) which is directly related to the

measured cross section by

σ̃NC(xBj, Q
2) ≡ 1

Y+

Q4 xBj

2πα2

(
d2σNC

dxBj dQ2

)
. (1.13)

In a QCD fit to the reduced cross section one can then determine the value of R and quote

the corresponding value of F2(xBj, Q
2). This method is used in recent measurements by the

H1 collaboration [32].

The perturbative expansion for σ̃NC(xBj, Q
2) (and for F2(xBj, Q

2)) has been calculated to

next-to-leading order [26]

σ̃NC(xBj, Q
2) = σ̃NC(xBj, Q

2)LO + σ̃NC(xBj, Q
2)NLO + O(α2

s) . (1.14)

Differences between σ̃NC(xBj, Q
2) and F2(xBj, Q

2) are due to higher order contributions while

at leading order both are identical. They are related to the quark densities via

σ̃NC(xBj, Q
2)LO = F2(xBj, Q

2)LO = xBj

∑
a

e2a
(
qa(xBj, μ

2
f) + q̄a(xBj, μ

2
f)
)
, (1.15)

where the sum runs over all quark flavors a. For the choice μ2
f = Q2 one obtains in leading

order the direct correspondence between the quark densities and the structure function

and the reduced cross section. At next-to-leading order the reduced cross section and the

structure function receive contributions from the middle and right diagram in Fig. 1.9. At

this order also the gluon density starts to contribute to the cross section.

Recent H1 results [32, 33] of the structure function F2(xBj, Q
2) are shown in Fig. 1.10

together with data from fixed target experiments. The H1 data alone cover a wide kinematic

range of 1.5 < Q2 < 30000GeV2 and 8 · 10−5 < xBj < 0.65. A next-to-leading order QCD

fit to the combined data sets has been performed based on the DGLAP equations. The

resulting parton distributions give a good description of the data over the whole kinematic

range.

In the QCD analysis in part three of this thesis we will use the data from [32] as additional

input for their sensitivity to the quark densities.
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Figure 1.10: The proton structure function F2(xBj, Q
2) obtained from recent measurements

by the H1 collaboration along with measurements from fixed target experiments. The results

from a next-to-leading order QCD fit to these data are compared to the measurements.
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In this chapter we introduce the jet algorithms used in this analysis and give the exact

definitions of all observables to be measured. We also give an overview of the theoretical

models used in the QCD analysis and in the unfolding procedure of the data.
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In perturbative QCD cross sections for short distance processes are formulated in terms of

interactions of partons (quarks and gluons), i.e. particles carrying non-zero color charge.

Subsequent long distance processes, as showering and hadronization of the primary partons

result in final states which consist of colorless hadrons. Due to the confinement of the color

charge there can be no unique association of a collimated spray of final state hadrons (a

“jet”) with a single initial quark or gluon.

To be able to compare the partonic cross sections predicted by the theory with observables

measured on the level of hadrons one deliberately chooses event properties which are only

weakly effected by long distance processes and which have a close correspondence between

partonic and hadronic final states, so-called “jet observables”. The residual extent to which

a jet observable is influenced by long distance processes depends on the exact definition.

To be calculable order-by-order in perturbation theory, jet observables have to fulfill certain

requirements.
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Cross sections in perturbative QCD become divergent for the emission of low energy par-

ticles1 (infrared divergence) and whenever two massless partons become parallel (collinear

1“Particle” refers throughout this work either to an energy deposit in the detector, to a parton in a

perturbative QCD calculation or to a hadron (i.e. to any particle produced in the hadronization process

including soft photons and leptons from secondary hadron decays). The masses of particles are neglected.

In deep-inelastic scattering the scattered lepton is excluded from the final state.

19
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divergence). For inclusive cross sections these singularities are canceled by contributions

from virtual corrections. For this cancellation to also take place in the jet cross section, it is

necessary that the observable is infrared and collinear safe.

❍ Infrared Safety

An observable is infrared safe if it is insensitive to the emission of low energy particles.

This is the case if it has the same value for a n-parton configuration as for a corre-

sponding (n + 1)-parton configuration obtained by adding an additional parton with

E → 0 to the final state.

❍ Collinear Safety

An observable is collinear safe if its value is not changed when replacing a pair of

collinear particles by a single particle carrying the summed momentum.

While these requirements are absolutely necessary for an observable to be calculable in

perturbation theory they also reduce the sensitivity to experimental limitations such as

limited angular resolutions and trigger thresholds of calorimeter cells.

Examples of observables which are not collinear safe are the sum over all momenta squared

of the final state particles or any variable which uses the properties of the most energetic

particle in the event.

Observables which are not infrared safe are for instance the angle of the jet with the

highest transverse energy in p̄p collisions or (for the reasons discussed below) in deep-inelastic

scattering in the Breit frame. In leading order two jets are produced with identical transverse

energies, such that the decision which of the jets end up with the highest transverse energy

depends on the emission of arbitrary soft gluons.
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In addition to the infrared and collinear safety of a jet observable further requirements are

needed in processes that involve hadrons in the initial state. While in e+e− annihilation the

total final state arises from the short distance interaction, this is not the case in processes

with initial state hadrons, where a fraction of the final state particles is not related to the

hard process but to soft interactions of the remaining partons in the incident hadrons (i.e.

the hadron remnant).

In perturbative QCD the cross section diverges for particles produced collinear to the

hadron direction. These initial state collinear singularities are not canceled by corresponding

virtual corrections but are dealt with by the factorization of the singular contributions in a

universal (i.e. process independent) way into the parton density functions of the hadron.

According to the factorization theorem of QCD [10] the universal factorizability of initial

state divergences is guaranteed for inclusive cross sections. In order to be applicable for jet

cross sections in hadron collisions and in deep-inelastic scattering the definition of the jet

observable has to enable us to factorize the initial state collinear singularities into universal
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Born process boson-gluon fusion

Breit frame:    2xBj 
➞
P + 

➞
q = 0

pT

pz

Figure 2.1: Deep-inelastic scattering in the Breit frame: in the Born process at O(α0
s) (left)

and in boson-gluon fusion at O(αs) (right).

parton distributions [34, 35]. It has been discussed in [35] that in jet production in deep-

inelastic scattering the factorization property is only given in a special family of reference

frames, one of them being the “Breit frame”.
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The Breit frame is defined by 2xBj

P + 
q = 0, where 
p and 
q are the momenta of the

incoming proton and the exchanged virtual boson (photon/Z0), respectively. The z-axis

is chosen to be the direction of the incoming proton and the rotation in the x-y plane is

performed such that the scattered lepton points in the positive x direction (i.e. φe,Breit = 0◦).
In the Breit frame the virtual photon (which is purely space-like with a four-momentum

q = {0, 0, 0,−Q}) interacts head-on with a parton from the proton. In the Born process

(Fig. 2.1, left) the incoming quark with longitudinal momentum pz,quark = Q/2 is back-

scattered with momentum pz,quark = −Q/2. In processes of O(αs) (e.g. boson-gluon fusion

in Fig. 2.1, right) two partons emerge with balanced transverse momenta2. In the special

case when xp ≡ xBj/x = 1/2 the Breit frame coincides with the photon-gluon center-of-mass

frame while in general both frames are related to each other by a longitudinal boost along

the z axis. The transverse energies of particles and jets are therefore identical in both frames.

It follows from the definition of the Breit frame that the transverse energy of the hadronic

final state does not have to balance the transverse energy of the scattered lepton (as this is

the case in the laboratory frame), but directly reflects the hardness of the underlying QCD

process. The Breit frame is hence very well suited to study QCD jets.

All jet observables measured in this thesis are defined in the Breit frame.

2By “transverse” we refer to the component perpendicular to the z-axis. The transverse energy is defined

as ET ≡ E sin θ where θ is the polar angle. Throughout this work “transverse energy” will always refer to

transverse energies in the Breit frame (unless stated otherwise).



22 Jet Production in Deep-Inelastic Scattering

��� !�� %��	������

One sort of jet observables are the “jet shape variables” (or “event shapes”) which are defined

by linear sums over all momenta of the hadronic final particles. In deep-inelastic scattering

the soft physics, related to the proton remnant, is usually separated by simply restricting the

phase space of the analysis to the photon hemisphere of the Breit frame (i.e. including only

momenta with pz < 0) [36, 37, 38]. Each final state topology is assessed with a continuous

number between zero and a maximum value (the latter is different for different variables)

which reflects the amount of QCD radiation in an event.

A more detailed look into the properties of the hadronic final state can be obtained by

using “jet algorithms” which decompose the topology of the final state into local regions

of collimated energy flow, the so-called “jets”. This procedure provides a flexible way to

separate the proton remnant from the hadronic final state resulting from the hard process,

based on the transverse momenta of particles relative to the proton direction. Properties of

the jets, such as jet multiplicities, angular distributions and distributions of the invariant

mass of the multi-jet system can then be used to study various aspects of the dynamics of

the underlying short distance process.

There is, however, no unique procedure to define jets. Any jet cross section, as well as

the properties of the jets will always depend on the exact definition. Different jet definitions

are in different ways sensitive to low-energy particles and therefore differently affected by

higher order corrections and by hadronization corrections. In this section we give a detailed

description of the jet algorithms used in the present analysis and compare their basic features.
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A large variety of jet definitions has been proposed in the last decades (see e.g. [39] and

references therein). The different jet definitions can be classified according to the following

criteria.
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“Jet clustering algorithms” define jets by successive recombinations of pairs of particles in an

iterative procedure (the ARCLUS algorithm [40] iteratively recombines three particles into

two). Other approaches are used in cone algorithms which define jets by maximizing the

transverse energy flow through a cone of fixed size [41, 42] or by the DECO procedure [43]

where the event is decomposed by a topological function which is calculated from all particles

simultaneously.

It has been shown [44, 45] that cone jet definitions suffer from several ambiguities (related

to the assignment of particles to jets) which introduce uncertainties when comparing the

predictions of perturbative calculations to measured jet cross sections. We will therefore

only use clustering algorithms which allow an unambiguous assignment of particles to jets.
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exclusive jet definition

γp

jet 1

jet 2

proton
remnant

inclusive jet definition

γp

jet 1

jet 2

Figure 2.2: An example of how the final state particles in a deep-inelastic scattering event in

the Breit frame are combined into jets by an exclusive jet definition (left) and by an inclusive

jet definition (right).
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For jet clustering algorithms one has to specify the order in which particles are recombined

into jets. The oldest clustering scheme, the JADE algorithm [46, 47] uses the invariant mass

as the ordering variable. This introduces, however, a strong attractive kinematic correlation

between soft particles leading to a non-intuitive assignment of particles to jets and producing

many soft and wide-angle jets [48].

It has been proposed [49, 50, 51] that the relative transverse momenta k⊥ or the angles

between particles are better suited as ordering variables. In this analysis we will use both

k⊥ and angular ordered jet algorithms.
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The way in which the event is decomposed into jets and (depending on the process) the

remnant(s) of the beam hadron(s) is very characteristic for the various jet definitions. In

e+e− annihilation, where the entire final state emerges from the hard process, one typically

uses exclusive jet definitions which cluster every final state particle into one of the hard jets.

The final state consists of a specific number of hard jets and nothing else. In hadron collisions

the final state contains also energy flow associated with the remnants of the beam hadrons.

In typical jet definitions used in this process only a fraction of the final state particles is

therefore included into the hard jets. The final state of an event contains some number of

hard jets with specified properties plus any number of particles not included in jets. We will

call these jet definitions “inclusive”.

The exclusive jet definitions can be extended to processes involving initial state hadrons

by explicitly introducing beam remnant jets to which particles can be clustered [47, 50]. In

Fig. 2.2 an example is shown of how the final state of a deep-inelastic scattering event in the
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gluon-photon center of mass frame

x 
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Figure 2.3: A photon-gluon fusion event in deep-inelastic scattering in the center-of-mass

frame (left) and in the Breit frame (right). Both frames are related to each other by a

longitudinal boost along the z direction. Since differences in the pseudorapidity are invariant

under longitudinal boosts the pseudorapidity of the jets in the center of mass frame can be

reconstructed from the difference of the pseudorapidities in the Breit frame.

Breit frame is decomposed by an exclusive (left) and by an inclusive jet definition (right)

exclusive jet definition: e p → e + n hard jets + beam remnant (+ nothing) ,

inclusive jet definition: e p → e + n hard jets + anything .
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The choice of variables used to define the distance measure in the clustering procedure is

influenced by the symmetries present in the reaction. In e+e− annihilation the laboratory

frame (where the jet finding is usually performed) coincides with the center-of-mass frame

of the hard process. Emphasizing the rotational invariance the distance measure is usually

defined in terms of energies E, polar angles θ and azimuthal angles φ of particles.

The laboratory frame in p̄p collisions and the Breit frame in deep-inelastic scattering have

the common property that the center-of-mass frame is typically boosted along the z direction

(see Fig. 2.3). Therefore one prefers to use variables which are invariant under longitudinal

boosts such as the transverse energy ET ≡ E sin θ, the pseudorapidity3 η ≡ − ln(tan(θ/2))

and the azimuthal angle φ.
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Whenever a pair of particles is merged during the clustering procedure into one four-vector

this is done according to a given “recombination scheme” which specifies how the new vector

3The pseudorapidity can also be defined by η ≡ 1
2 ln

p+pz

p−pz
. For massless particles pseudorapidity differ-

ences are invariant under longitudinal boosts. For massive particles this is only the case for differences in

the (true) rapidity defined by y ≡ 1
2 ln

E+pz

E−pz
.
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is calculated. Different schemes have been proposed in the literature [52, 50]. They differ

by the properties of the four-vectors in the intermediate clustering steps and also in the

properties of the final jets. In our analysis we will use recombination schemes which are

formulated in the variables that are also used to evaluate the respective distance measure.

For the exclusive jet definitions (which perform the clustering based on energies and

angles) we are using the “E-scheme” in which particles are merged by adding their four-

vectors

E-scheme: p′ = p1 + p2 . (2.1)

In this procedure the merged particles and the resulting jets are massive.

The inclusive jet definitions in our analysis are using a distance measure which, being

based on transverse energies ET and differences in the pseudorapidities Δη and azimuthal

angles Δφ, is invariant under longitudinal boosts. To maintain this property during the

whole clustering procedure the merged particles and the final jets have to be defined to

be massless (otherwise we would have to use differences in the true rapidity Δy instead of

Δη). We therefore use the ET -recombination scheme in which the transverse energy of the

combined four-vector is given by the (scalar) sum of the transverse particle energies. The

direction of the (massless) four-vector is calculated from the ET weighted averages of the

particle variables η and φ

ET -scheme: E ′
T = ET,1 + ET,2 , (2.2)

η′ =
ET,1 η1 + ET,2 η2
ET,1 + ET,2

, φ′ =
ET,1 φ1 + ET,2 φ2

ET,1 + ET,2

.

The resulting jets are massless.
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The (exclusive) k⊥ algorithm for DIS has been proposed in [50] as a modification of the

Durham algorithm (invented for e+e− annihilation, see e.g. [49]) to account for the proton

remnant. In this definition the proton remnant is implicitly considered as a particle of infinite

momentum. Unlike in the definition of the modified JADE algorithm for DIS [47] it does,

however, not appear explicitly in the clustering procedure as an additional particle. The

clustering procedure is defined by a reference scale S and a resolution parameter ycut which

specify at which relative k2⊥ = ycutS
2 the final jets are separated from each other and from

the proton remnant. The relative k2⊥ij between two particles i, j is here defined as

k2⊥ij ≡ 2min(E2
i , E

2
j ) (1− cos θij) . (2.3)

At small θij the k
2
⊥ij such defined is an approximation of the relative transverse momentum

squared of the lower energetic particle with respect to the higher energetic one, but has
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the advantage of being monotone with θij , while the relative transverse momentum becomes

smaller again for θij > 90◦.
The clustering procedure starts with a list of all particles.

1. We compute the distance yip of every final state particle i to the proton remnant and

the relative distance yij of every pair of particles i, j

yip = 2
E2

i

S2
(1− cos θip) , yij = 2

min(E2
i , E

2
j )

S2
(1− cos θij) , (2.4)

where θip is the angle between the i-th particle and the +z direction and θij is the

angle between the particles i and j.

2. The smallest value of all {yip, yij} is labeled ymin.

❍ If ymin belongs to the set {yip} and ymin < ycut the particle i is considered to be

part of the proton remnant and removed from the list of particles.

❍ If ymin belongs to the set {yij} and ymin < ycut the particles i and j are recombined

in the E-scheme.

3. The procedure is repeated until ymin > ycut. The remaining particles are the hard jets

which are considered in the analysis.
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The Cambridge algorithm for e+e− annihilation has been proposed in [51] as a modification

of the Durham algorithm in that now the clustering is performed in the order of smallest

angles θij between particles. We have extended this definition to consider the proton remnant

in deep-inelastic scattering according to the prescription in the exclusive k⊥ algorithm. A

brief description has already been given in [53].

In the exclusive k⊥ algorithm the variables yij and yip act both as ordering variables (step

1) and “test variables” which define the end of the clustering procedure (steps 2 and 3). In

the Cambridge algorithm these functions are separated. While the yij and yip (as defined

before) are still used as test variables, the ordering variables are chosen to be vij and vip
which are defined in terms of angles only (see below).

The clustering procedure starts with a list of all particles and an empty list of jets.

1. We compute the distance vip of every final state particle i to the proton remnant as

well as the relative distance vij of every pair of particles i, j

vip = 2 (1− cos θip) , vij = 2 (1− cos θij) . (2.5)

2. The smallest value of all {vip, vij} is labeled vmin.
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❍ If vmin belongs to the set {vip} and the corresponding value yip (as defined in (2.4))

fulfills yip < ycut the particle i is considered to be part of the proton remnant and

removed from the list of particles.

❍ If vmin belongs to the set {vij} and the corresponding value yij (as defined in (2.4))

fulfills yij < ycut the particles i and j are recombined in the E-scheme.

3. If in any of the two cases above yij > ycut or yip > ycut the corresponding merge is not

carried out but the lower energetic particle of i and j (or particle i if vmin was from

the set {vip}) is put into the list of jets and removed from the list of particles. This

step of singling out the lower energetic particle is called “soft freezing” [51].

4. This procedure is repeated until only a single particle is left which is then also included

in the list of jets.

Both exclusive jet definitions require two parameters, the reference scale S and the resolution

parameter ycut. When the clustering procedures are finished the hard jets are separated from

each other and from the proton remnant by relative transverse momenta k2⊥ ≥ ycutS
2. No

further “hardness cuts” need to be applied.
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The inclusive k⊥ algorithm has been proposed in [54, 34]. The clustering procedure starts

with a list of all particles and an empty list of jets.

1. For each particle i as well as for each pair of particles i, j the distances di and dij are

calculated

di = E2
T,i and dij = min(E2

T,i, E
2
T,j)

R2
ij

R2
0

with R2
ij = (Δηij)

2 + (Δφij)
2 , (2.6)

where R0 is a parameter which is always set to R0 = 1 in this analysis (as recommended

in [54, 34]).

2. The smallest value of all di and dij is labeled dmin.

3. If dmin belongs to the set {dij}, the particles i and j are merged into a new particle

using the ET recombination scheme.

4. If dmin belongs to the set {di}, the particle i is removed from the list of particles and

added to the list of jets.

5. The procedure is finished when no particles are left (i.e. all particles are included in

jets).
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The last jets that entered the list are the ones with highest transverse energies. These jets

are considered in the analysis.

��� ��!
��� 4������ ������ ��!������

The Aachen algorithm is a new jet definition, invented for the present work (a brief descrip-

tion has already been given in a previous publication [53]). In analogy to the modification

from the exclusive k⊥ algorithm to the Cambridge algorithm, we have modified the inclusive

k⊥ algorithm to obtain an inclusive algorithm with angular ordering.

The clustering procedure starts with a list of all particles.

1. Find the pair of particles i, j for which the distance dij is smallest

dij =
R2

ij

R2
0

=
(Δηij)

2 + (Δφij)
2

R2
0

. (2.7)

2. If dij < 1 the particles i and j are merged into a new particle using the ET recombi-

nation scheme. As for the inclusive k⊥ algorithm we set R0 = 1.

3. The procedure is finished when all distances between pairs of particles are dij > 1. The

remaining particles are sorted in the order of their transverse energies. The particles

with the largest transverse energies are the jets which are considered in the analysis.

In inclusive jet and dijet production in the Breit frame this definition is identical to the

inclusive k⊥ algorithm for perturbative calculations at NLO.

While for the exclusive jet definitions the parameters S and ycut define the resolution

by which jets are resolved, the clustering procedure for both inclusive jet definitions is

independent of an external resolution scale. In the inclusive jet definitions particles with

Rij < R0 are subsequently merged, so that all final jets are separated by distances Rij > R0.

It is still possible that particles inside a jet have a distance Rij > R0 to the jet axis and that

particles with Rij < R0 are not part of the jet.

The inclusive jet definitions provide a list of many jets, from which, however, only those

of highest ET are of physical interest. To measure the n-jet cross section one would use the

n jets of largest ET . Additional hardness cuts can be applied for example on the transverse

energies of the single jets or on properties of the n-jet system.
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The predictions of perturbative QCD for jet production in deep-inelastic scattering have

been calculated in various approximations. Phenomenological models have been constructed

to simulate non-perturbative (hadronization) processes. Here we introduce the calculations

and models used in this analysis.
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Figure 2.4: The leading order diagrams for jet production of high ET (in the Breit frame)

in deep-inelastic scattering.
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The main observables investigated in this analysis are the inclusive jet and the dijet cross

sections in the Breit frame. The leading order contributions to these processes are represented

by the diagrams displayed in Fig. 2.4. These diagrams which are of order O(αs) describe

(from left to right) the QCD-Compton process with initial and final state gluon radiation

and the boson-gluon fusion process. An important qualitative difference between the jet

cross section and the inclusive cross section (i.e. the structure function) is that the former

are directly (i.e. already at leading order) sensitive to the gluon density in the proton. In

most phase space regions the jet cross section is dominated by boson-gluon fusion.

At leading order there is a one-to-one correspondence between partons and jets. The

leading order jet cross section does therefore not depend on details of the jet definition (as

the radius parameter R0 for the inclusive jet definitions introduced in section 2.2.3). Further-

more the predictions are subject to the ambiguities in the choice of the renormalization and

factorization scales. Hence we can not expect this calculation to make reliable quantitative

predictions for jet cross sections. However, if the perturbative expansion is well behaved, we

can expect the leading order calculation to predict the order of magnitude of a given cross

section and the rough features of an observable.

In addition to the kinematic variables xBj and Q
2 as introduced in section 1.3 we need

three further variables to describe the leading order jet cross section. These are usually

chosen to be z, xp and φ (see e.g. [55]). The variable φ denotes the angle between the plane

given by the incoming and the scattered lepton and the plane given by the incoming parton

and the jets in the photon-parton center-of-mass frame (see Fig. 2.5). The other variables

are defined as

z ≡ pp · p1
pp · q (0 ≤ z ≤ 1) , xp ≡ Q2

2pp · q (xBj ≤ xp ≤ 1) , (2.8)

where the particle momenta are labeled according to Fig. 2.4. In these variables the sin-

gularity structure of the QCD-Compton and the boson-gluon fusion process is exhibited



30 Jet Production in Deep-Inelastic Scattering

l
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Figure 2.5: The variable φ denotes the angle between the plane given by the incoming

and the scattered lepton and the plane given by the incoming parton and the jets in the

photon-parton center-of-mass frame.

by [55]

dσQCDC
jet ∝ 4 [(ppq − p1p2)

2(ppp1)
2 + (ppq)

4]

2ppp2 2p1p2(ppq)2
=

1 + x2pz
2

(1− z)(1 − xp)
, (2.9)

dσBGF
jet ∝ 4 [(ppp1)

2 + (ppp2)
2] [(ppq − p1p2)

2 + (p1p2)
2]

2ppp1 2ppp2(ppq)2
=

[z2 + (1− z)2]
[
x2p + (1− xp)

2
]

z(1 − z)
.

(2.10)

The matrix elements of both processes diverge for the following kinematic configurations

QCD-Compton boson-gluon fusion

p2 collinear to pp ⇒ z → 1 , p1 collinear to pp ⇒ z → 0 ,

p2 collinear to p1 ⇒ xp → 1 , p2 collinear to pp ⇒ z → 1 ,

p2 soft ⇒ z, xp → 1 , p1 soft ⇒ z → 0 ,

p2 soft ⇒ z → 1 .

Now we express the variables z and xp in terms of the dijet variables ET and η′ and demon-

strate to which regions of the jet phase space these configurations belong. While the variables

ET and η′ are defined in the Breit frame they are both invariant under longitudinal boosts

and therefore identical to the corresponding variables in the center-of-mass (CM) frame (see

Fig. 2.3)

η′ ≡ 1

2
|η1,Breit − η2,Breit| =

1

2
|η1,CM − η2,CM| = |η1,CM| = |η2,CM| ,

ET ≡ ET, jet,Breit = ET,jet,CM . (2.11)

Using these variables we can disentangle the angular dependence (η′) and the dependence

on the hardness scale (ET ) of the matrix elements. We introduce the center-of-mass energy

ŝ ≡ (pp + q)2 of the photon-parton system and obtain from (2.8)

Q2

ŝ
=

xp
1− xp

and
E2

T

ŝ
= z(1− z) . (2.12)
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Using the relation ŝ = 4E2
T cosh2(η′) it follows that

E2
T

Q2
=

1− xp
xp

z(1 − z) , 4 cosh2(η′) =
1

z(1 − z)
. (2.13)

Comparing (2.13) to (2.9) and (2.10) one sees that all divergences are either in the region

of vanishing transverse jet energies ET → 0 or infinitely large pseudorapidities η′ → ∞.

The requirement ET > ET,min > 0 alone is sufficient to remove all divergences from both

contributions. If we apply a hard cut on the transverse jet energy it is therefore not necessary

to make further angular jet cuts. This allows to investigate the inclusive jet cross section

at large ET where only properties of single jets are measured, regardless of the properties of

the other jet(s) in the event.

The momentum fraction x of the parton emerging from the parton density function of

the proton is related to the center-of-mass energy by x = xBj(1 + ŝ/Q2). A special property

of the (simplified) leading-order picture in which the final state contains no further partons

apart from the ones that are identified as jets, is that the center-of-mass energy of the

partonic subprocess is identical with the invariant mass of the dijet system ŝ = M2
jj. The

fractional parton momentum x is therefore identical to the observable ξ which we define as

ξ ≡ xBj(1 +M2
jj/Q

2). In this approximation one can directly conclude from the dijet cross

section measured differentially in ξ to the parton densities in the proton fa/p(x = ξ).

At higher orders in the perturbative expansion the final state may contain further par-

tons which are not contained in the jets. In general the dijet mass can be lower than the

center-of-mass energy such that the observable ξ gives only an approximate representation

of the parton momentum fraction (M2
jj ≤ ŝ ⇒ ξ ≤ x). This reflects that (as described in

section 1.2) the fractional parton momentum x is not an observable quantity. The value of

x specifies only the (arbitrary) point within the theoretical calculation below which parton

emissions are calculated via the (process specific) matrix elements and above which these

are considered to be part of the proton’s (universal) parton density functions.

Beyond the leading order approximation there is no longer any linear relation between

the dijet cross section in a specific ξ range and the parton densities in the corresponding x

range. Instead the variable ξ serves only as a lower bound of the integral over all momentum

fractions x in the convolution of the matrix element and the parton density functions. The

x-dependence of the parton density functions can only be extracted from the differential

cross section through an unfolding procedure (as a fit).
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In the leading order approximation perturbative QCD can explain the appearance of specific

event topologies. In order to make reliable quantitative predictions the perturbative calcu-

lations have to be performed (at least) in next-to-leading order (NLO). In inclusive jet and

dijet production in DIS such calculations include diagrams as the ones shown in Fig. 2.6.
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Figure 2.6: Contributions to the next-to-leading order corrections from virtual (left) and

real diagrams (right) to the inclusive jet and the dijet cross section in the Breit frame. The

diagram on the right contributes also to the leading order cross section in three-jet production.

Next-to-leading order calculations have two essential features. The real corrections (Fig. 2.6,

right) are a first step in the modeling of the internal structure of jets, introducing a depen-

dence of the jet cross section on the exact definition. The contributions from the virtual

corrections (Fig. 2.6, left) have the effect of introducing a dependence of the perturbative

coefficient functions on the renormalization scale which cancels part of the scale dependence

of αs. In the same way contributions from collinear initial state radiation introduce a depen-

dence of the coefficients on the factorization scale which cancels part of the scale dependence

of the parton distributions. The NLO corrections can substantially reduce the scale depen-

dence and thereby allow reliable predictions for cross sections and a determination αs and

the parton density functions.

The realization of a NLO calculation for jet cross sections involves several complications

related to the cancellation of the divergences from real and virtual contributions. Since the

phase space integrals are too difficult to allow analytical calculations, numerical methods

have to be used. However, before numerical methods are directly applicable the singular

parts of the phase space have to be treated analytically. Two methods have been proposed

for this purpose and four different computer programs are available for NLO calculations of

jet cross sections in deep-inelastic scattering.
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The phase space slicing method [56] introduces a cut-off parameter (e.g. on the invariant

mass of a two-parton system) below which soft and collinear radiation is considered to

be unresolvable. In this phase space region soft and collinear approximations are applied.

The contribution is integrated over analytically and added to the contributions from virtual

corrections, yielding a finite result. The integration over the resolved region can safely be

performed using Monte Carlo integration. In this approach it has to be checked that the

cut-off parameter is chosen small enough for the soft and collinear approximations to be

valid. Only in this case does the calculation become stable with respect to a variation of the
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cut-off. The two programs MEPJET [57] and JETVIP [58] are based on this technique.
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In the subtraction method [59] a local counterterm is computed which exactly matches the

singular behavior of the real and of the virtual corrections. Adding and subtracting this

term respectively from both singular parts yields finite results for both, allowing the Monte

Carlo integration to be performed over the whole phase space. This approach is followed in

the programs DISENT [60] and DISASTER++ [61].

We have performed a detailed comparison of the four programs in [62] with a statistical

precision of better than 0.5%. All programs are in perfect agreement for leading order

calculations. For NLO calculations the programs DISENT and DISASTER++ are also seen

to be in good agreement with each other. The MEPJET program is typically 5% lower than

the other programs. The JETVIP results are found to be unstable with respect to variations

of the cut-off parameter and the program tends to underestimate statistical errors. Although

a better agreement between the four programs is desirable, we take the agreement between

DISENT and DISASTER++ (both using different subtraction terms) as an indication that

these programs represent valid implementations of the NLO matrix elements.

In this analysis all NLO calculations are performed using the program DISENT (which

is significantly faster than DISASTER++). The unique features of MEPJET are used to

perform leading order calculations including quark mass effects in dijet production and to

compute the three- and four-jet cross sections in leading order.
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Perturbative fixed order calculations (beyond leading order) can give reliable quantitative

predictions for observables for which multiple emission effects and non-perturbative contri-

butions are small. They fail, however, to predict details of the structure of multi-particle

final states as observed in the experiment. A complementary approach to describe these

properties of the hadronic final state is used in “parton cascade models”. Starting from the

leading order matrix elements of a process subsequent parton emissions are calculated based

on soft and collinear approximations. These parton cascade models are included in event

generators together with models of the hadronization process.

&����� 6������

In the collinear limit the cross section for multiple emissions factorizes and can be described

as a probabilistic series of parton splittings. The parton shower is divided into the time-

like final state shower and the space-like initial state shower. The final state shower arises

from the outgoing partons produced by fixed order, tree-level matrix elements. The initial

state parton shower uses a backwards evolution [63], starting from the hard interaction
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and evolving downwards in scale back towards the incoming hadron, taking into account

the parton density functions. Further emissions from the partons produced by initial-state

radiation are then calculated using the final-state shower.

The implementation of the parton shower in the program HERWIG [64] uses evolution

variables which naturally restrict the branching phase space to an angular ordered region,

thus automatically including coherence effects. In the virtuality-ordered parton shower by

LEPTO [65] these coherence effects are included by disallowing angular disordered emissions.

In both programs HERWIG and LEPTO the parton shower is matched to to the O(αs)

matrix elements.
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An alternative approximation of higher order emissions is the color dipole model (CDM) [66]

which is implemented in the program ARIADNE [67]. In the CDM gluon emissions are

described as radiations from the color dipole between pairs of partons. Since this procedure

only produces further gluons the process g → qq̄ is added to the model. For deep-inelastic

scattering the probability of the first emission is corrected to reproduce the matrix elements

of O(αs) [68].

"#)#1 2������������ /��
��

In the parton cascade models described above the higher order emissions are restricted

to parton virtualities above a cut-off Q0 which is typically chosen to be 1GeV. At this

point the perturbative evolution is stopped. The non-perturbative phase is described by

a phenomenological hadronization model which performs the conversion of the final state

partons into hadrons locally in phase space. Due to the universal cut-off of the parton

cascade the hadronization procedure is independent of the hard process. The most successful

hadronization models are the “cluster model” [69] (implemented in HERWIG) and the Lund

“string fragmentation model” [70] (implemented in JETSET [71] and used by LEPTO and

ARIADNE).
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In the first step of the cluster fragmentation model all outgoing gluons are split non-

perturbatively into light (u and d) quark-antiquark pairs. Neighboring (color connected)

qq̄-pairs are then combined to form color-singlet “clusters” (see Fig. 2.7 (a)). Clusters which

are too light to decay into two hadrons, are taken to represent the lightest single hadron

of its flavor. Those clusters whose mass is above some limit are broken into sub-clusters,

taking into account the available phase space and spin conservation. The resulting clusters

are identified with hadrons according to their flavor content.
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Figure 2.7: The hadronization of a partonic final state in the cluster model (left) and in

the string fragmentation model (right).
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The string model of fragmentation is based on the picture of a classical potential between

two partons. The color field between a qq̄-pair is visualized as a string and described by

a Coulomb potential which turns into a linearly rising function towards larger distances r

between partons, i.e. V (r) ∝ a/r+ br. At large separations r the energy stored in the string

is proportional to r due to the linear term. In deep-inelastic scattering, strings are also

assumed between the (anti-)quark and the proton remnant. Gluons cause kinks in the string

with the four-momentum of the gluon. When the energy stored in the string is large enough,

the string breaks up creating a new qq̄-pair and forming new string pieces. The process is

iterated until all the available energy is been used up. The resulting string fragments are

combined into mesons and baryons (see Figure 2.7 (b)). The kinematics of the produced

hadrons is given by the “Lund symmetric fragmentation function”

f(z) ∝ (1− z)a

z
exp

(
bm⊥
z

)
, (2.14)

where z is the longitudinal momentum fraction of a primary quark carried by the hadron.

The transverse mass m⊥ ≡ √
m2 + p2⊥ is obtained from the mass m and the transverse

momentum p⊥ of the hadron (with respect to the original quark). In this model the p⊥
distribution is assumed to be a Gaussian of width σq which enters (together with a and b)

as a parameter.

"#)#3 ��������
 4�� ����
!�����

For a correct description of cross sections in deep-inelastic scattering it is important to take

into account higher order QED corrections. Especially hard photon radiation may strongly

influence the reconstruction of the event kinematics and (as in our case) the boost vector
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(a) (c) (c) (d)

Figure 2.8: QED corrections at the leptonic vertex as included in the program DJANGO

to the Breit frame (as discussed in appendix A). Since the cross section for real photon

emissions is proportional to the inverse mass squared of a particle, the largest corrections

are those from the lepton line. The program DJANGO [72] is an interface of the program

HERACLES [73] and the programs LEPTO and ARIADNE and provides a calculation of

the diagrams shown in Fig. 2.8. These are the initial and the final state emissions of photons

from the lepton, virtual corrections at the lepton vertex and loop-corrections to the photon

propagator.
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In this section we give the exact definitions of the observables to be measured in this analysis

and provide all information needed to perform the theoretical calculations for comparisons.

All observables are measured in positron-proton collisions with beam energies of 27.5GeV

for the positrons, and 820GeV for the protons. In all cases we measure inclusive jet cross

sections (i.e. the n-jet cross section includes all events with n or more jets).
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The kinematic range in which the jet cross sections are measured is solely defined by the

kinematic variables y and Q2.

0.2 < y < 0.6 , 150 < Q2 < 15 000GeV2 or 10 < Q2 < 70GeV2 (2.15)

The two regions of Q2 will be labeled “high Q2” and “low Q2”, respectively. The gap in the

Q2 range is caused by the geometry of the H1 calorimeter which does not provide a uniform

acceptance of the scattered positron over the whole range of y at intermediate Q2 values. The

lower limit on y has been chosen to exclude the kinematic region of large x-Bjorken where

jets are predominantly produced in the forward direction (i.e. at the edge of the detector

acceptance). The upper limit on y guarantees large energies of the scattered positron where

trigger efficiencies are high (see section 5.1).

The jet finding is performed on the (massless) particles in the Breit frame (defined in

section 2.1) using the inclusive and the exclusive jet algorithms introduced in section 2.2.
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Any extrapolation of a jet cross section beyond the detector acceptance may introduce a bias

towards the model used for the extrapolation. We therefore restrict the jet phase space to

the angular range in which jets are well contained in the acceptance of the H1 detector. The

four-vectors of the jets found in the Breit frame are boosted back to the laboratory frame

where we apply the pseudorapidity cut

−1 < ηlab < 2.5 . (2.16)

As discussed in section 2.3.1 at order O(αs) jet production is described by three “jet vari-

ables” in addition to the two kinematic variables Q2 and xBj. Integrating over the azimuthal

angle φ between the jet and the lepton plane, two independent jet variables are left. These

can be chosen e.g. as the “jet hardness scale” ET and the angular variable η′ (see sec-

tion 2.3.1). However, different linear combinations of these (and the kinematic variables) are

sensitive to different properties of the hard process.

In this analysis we measure the inclusive jet and the dijet cross sections. Since the

theoretical predictions for both are calculated to next-to-leading order both can be used

to determine αs and the gluon density in the proton. The measurement of the properties

of the dijet system provides more information than is provided by the single jet properties

measured in the inclusive jet cross section. The dijet cross section therefore allows to perform

more detailed tests of the theoretical predictions. For the same reason, however, the dijet

cross section is also more sensitive to the limitations of fixed order predictions (as discussed

below) whereas the predictions for the inclusive jet cross section are not effected.

The dijet cross section is thus better suited to test the theoretical predictions while the

inclusive jet cross section is preferable to determine the parameters of the theory. The

final aim is, however, to demonstrate consistency between the results obtained using both

observables.
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To test the prediction of the renormalization group equation one wants to determine the

value of the strong coupling constant at different values of the “process relevant hard scale”

(which is then chosen to be the renormalization scale in the theoretical calculation). In

jet production in deep-inelastic scattering two large scales are present. These are the four-

momentum transfer at the lepton vertex Q2 (which is only indirectly related to the hard QCD

process) and the transverse jet energy in the Breit frame ET (the physical scale at which e.g.

hard gluon radiation from a quark is resolved). The conceptually simplest observable which

is sensitive to both hard scales is the inclusive jet cross section measured double differentially

as d2σjet/(dETdQ
2) while integrating over all jet angles. In the inclusive jet cross section

all jets are counted that pass the required cuts. A single event may therefore give multiple

contributions to the distribution.
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We measure the inclusive jet cross section using the inclusive jet algorithms only. Every

jet found by the algorithms is included in the analysis if it passes the angular cut in (2.16).

The results are presented for ET > 7GeV.
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The Breit frame (in which the jet algorithms are applied) is in general shifted with respect

to the center-of-mass frame of the hard process by a longitudinal boost. The reconstruction

of the properties of the hard process in the center-of-mass frame requires information of

both jets which can only be obtained in the measurement of the dijet cross section. For

a comprehensive test of the theoretical predictions we measure the dijet cross section as a

function of the following (dijet-) variables

ET ≡ 1

2
(ET,1 + ET,2) , Mjj ≡

√
(p1 + p2)2 ,

η′ ≡ 1

2
|η1 − η2| , ξ ≡ xBj

(
1 +

M2
jj

Q2

)
,

xp ≡ xBj

ξ
.

where the index 1 (2) refers to the jet of highest (second highest) transverse energy in

the event and pi denotes the four-vector of the i-th jet. The ET distribution is a similar

observable as the ET distribution of the inclusive jet cross section and will enable us to

repeat the αs analysis in a similar way. As discussed in section 2.3.1 the variable η′ is (in

the leading order approximation) identical to the jet pseudorapidity in the dijet center-of-

mass frame and therefore allows to test the QCD prediction of the angular jet distribution.

The invariant dijet mass Mjj reflects the center-of-mass energy of the QCD process. In

the leading order picture the proton momentum fraction carried by the incoming parton

is given by the variable ξ. The ξ distribution is directly sensitive to the x dependence

of the parton density functions and therefore important in the determination of the gluon

density in the proton. The last dijet variable is xp, the partonic scaling variable (see (2.8)).

Furthermore we measure the distributions of the kinematic variables Q2, y and xBj and

also the pseudorapidity distributions of the most forward and the most backward jet in the

laboratory frame (where the angular cuts are applied) to test the overall description of the

data by the theory.

Care has to be taken in the choice of the dijet selection cuts in order to minimize the

influence of “infrared sensitive” phase space regions. These are the regions at the exclusive

boundary of the phase space where, due the suppression of real emissions, the cancellation

between soft and collinear singularities in fixed order calculations becomes incomplete and

reliable results can only be obtained using resummed calculations [74]. These are however

not (yet) available.



2.4 Definitions of the Jet Observables 39

0

0.05

0.1

0.15

0.2

0.25

0.3

10 10
2

10
3

Q2  /  GeV2

R
di

je
t =

 σ
di

je
t /

 σ
in

cl
us

iv
e

inclusive k⊥ / Aachen algorithms
exclusive k⊥ algorithm
Cambridge algorithm

NLO  /  CTEQ4M pdfs

dijet rate

Figure 2.9: The next-to-leading order prediction of the dijet rate, defined as the ratio of the

dijet cross section and the inclusive ep cross section in the same kinematic region. The dijet

rate is shown for four different jet algorithms (from which two are identical at next-to-leading

order).

Dijet selection cuts on the variable k⊥ (as defined in (2.3)) avoid the infrared sensitive

regions intrinsically. Therefore no further cuts are needed for the exclusive jet algorithms in

addition to the intrinsic cuts which are applied due to the resolution parameter ycut and the

reference scale S2 (as defined in section 2.2.2). These are chosen as

exclusive jet algorithms: S2 = 100GeV2 and ycut = 1 . (2.17)

If more than two jets are found we consider the two jets of highest transverse energy.

The inclusive jet definitions do not require any “hardness cuts” during the clustering

procedure. Since these algorithms use the variable ET for the clustering procedure it is a

natural choice to use it also for the final dijet selection. While a simple cut ET 1,2 > ET cut is

infrared sensitive (as discussed and demonstrated in [75, 76]) an additional (harder) cut on

either the sum of the transverse jet energies, the ET of the highest ET jet or on the dijet mass

can minimize the influence of the infrared sensitive phase space regions. Since both of the

latter choices lead to significantly larger NLO corrections or larger hadronization corrections

we decide to use the first scenario and apply the following cuts

inclusive jet algorithms: (ET,1 + ET,2) > 17GeV and ET 1,2 > 5GeV . (2.18)

Using these selection cuts we compare in Fig. 2.9 the theoretical predictions of the dijet rate

(i.e. the ratio of the dijet cross section and the inclusive ep cross section) for the different

algorithms. One sees that due to the specific selection criteria the dijet rates have a slightly

different Q2 dependence. In the high Q2 region the rates are, however, approximately of the

same size for all algorithms, rising towards higher Q2 up to 25%.
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The three- and four-jet cross sections are measured using the inclusive k⊥ algorithm. In

addition to the pseudorapidity cut in the laboratory frame (2.16) we require

three-jet selection: ET 1,2,3 > 5GeV and M3−jet > 25GeV

four-jet selection: ET 1,2,3,4 > 5GeV and M4−jet > 25GeV

where M3−jet (M4−jet) is the invariant mass of the three (four) jets with largest transverse

energies.
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In addition to the measurements of jet production rates it is also of interest to study the

internal structure of jets. The internal jet structure is sensitive to QCD processes at smaller

relative transverse momenta and also to the hadronization process. The phase space defini-

tion is given together with the results of the analysis in section 7.4. Here we introduce the

definitions of the observables which are applied to the jets measured in an inclusive dijet

event sample using the inclusive k⊥ algorithm.

We investigate two observables which are sensitive to different aspects of jet broadening.

The “jet shape” measures the radial distribution of the transverse jet energy and is effected

by hard and by soft processes over the whole radial range. The multiplicities of subjets,

resolved at a resolution scale which is a fraction of the jet’s transverse energy are sensitive to

more local structures of relative transverse momentum within a jet. Here the perturbative

and the non-perturbative contributions are better separated. While at larger values of the

resolution parameter perturbative contributions dominate, non-perturbative contributions

become increasingly important towards smaller values.
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The jet shape Ψ(r/R0) is defined as the fractional transverse jet energy contained in a

subcone of radius r concentric with the jet axis (see Fig. 2.10), averaged over all considered

jets in the event sample

Ψ(r/R0) ≡ 1

Njets

∑
jets

ET (r/R0)

ET,jet
, (2.19)

where Njets is the total number of these jets. As proposed in [44], only particles assigned by

the jet algorithm to the jet are considered.

Often the denominator in the definition of Ψ is chosen to be the summed ET of all

particles within a radius R0 to the jet axis. This means that Ψ(r/R0 = 1) = 1. In our

definition (2.19) of Ψ the denominator is given by the transverse energy of the jet. Since for

the inclusive k⊥ algorithm the particles assigned to a jet are not necessarily within a radius
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jet axis

Figure 2.10: The jet shape Ψ(r/R) is defined as the fractional transverse jet energy con-

tained in a subcone of radius r concentric with the jet axis of a jet which is defined by the

radius R.

of r/R0 < 1 to the jet axis, Ψ(r/R0 = 1) is not constrained to have the value of one. With

this choice of our observable we are also sensitive to the amount of transverse jet energy

outside the radius R0.
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For each jet in the sample the clustering procedure is repeated for all particles assigned to

the jet. The clustering is stopped when the distances yij between all particles i, j are above

some cut-off ycut

yij =
min(E2

T,i, E
2
T,j)

E2
T,jet

(Δηij)
2 + (Δφij)

2

R2
0

> ycut (2.20)

and the remaining particles are called “subjets”. The parameter ycut defines the minimal

relative transverse energy between subjets inside the jet and thus determines the extent to

which the internal jet structure is resolved. From this definition it follows that for ycut > 0.25

no subjet is resolved (therefore the number of subjets is one), while for ycut → 0 every particle

in the jet is a subjet. The observable that is studied in this analysis is the average number

of subjets for a given value of the resolution parameter, for values ycut ≥ 10−3.
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Stringent tests of a theory and reliable determinations of its parameters can only be per-

formed through comparisons or fits to observables for which the theory is predictive, i.e.

for which approximations are expected to be valid and uncertainties are small. This chap-

ter is devoted to the identification of such observables and to the estimation of the size of

remaining theoretical uncertainties.

In the previous chapter we have described the jet algorithms and defined the phase space

in which the jet analysis will be performed. Furthermore we have introduced the available

theoretical models. In this chapter we use the predictions of these models to investigate

the properties of the different jet definitions. In the first section we study the size of non-

perturbative contributions to different jet observables and the uncertainties arising from the

model and parameter dependence of the predictions. The topic of the second section are the

predictions of perturbative next-to-leading order (NLO) calculations for jet cross sections.

We investigate the size of the next-to-leading order corrections and the renormalization scale

dependence for different choices of scales.

All predictions are obtained using the programs HERWIG5.9 [64], LEPTO6.5 [65] and

ARIADNE4.08 [67]. The calculations are performed for the HERA running conditions of

1997 (820GeV protons collided with 27.5GeV positrons) using the CTEQ4L parameteri-

zation [77] of the parton distributions and the 1-loop formula for the running of αs. The

LEPTO predictions are obtained without the soft color interaction model.

The NLO calculations are performed in the MS-scheme by the program DISENT [60]

using CTEQ4M parton distributions and the 2-loop formula for the running of αs. The

renormalization scale is set to the transverse jet energy μr = ET , the factorization scale

to the mean ET of the jets μf =
√
200GeV � 〈ET 〉 (unless stated otherwise; see also the

discussion in section 8.2).

The phase space definition and the jet selection criteria are as defined in section 2.4.
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Figure 3.1: The hadronization corrections to the dijet cross section for different jet defini-

tions as a function of Q2 as predicted by the HERWIG cluster fragmentation model.
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Before the prediction of a perturbative QCD calculation (“parton-level” cross section) can

be compared to a measured “hadron-level” jet cross section, the size of non-perturbative con-

tributions (“hadronization corrections”) has to be estimated. There is, however, no unique

way to separate perturbative and non-perturbative contributions in theoretical calculations.

A consistent treatment requires a well defined matching of both contributions, e.g. by the

introduction of an “infrared matching scale” [36]. Such approaches are not (yet) available

for high ET jet cross sections in deep-inelastic scattering and the only predictions are those

of the phenomenological hadronization models described in section 2.3.4. These models

are implemented in event generators that include leading order matrix elements and a per-

turbative parton cascade which is matched to the hadronization model. Based on these

models, hadronization corrections are compared for the different jet definitions introduced

in section 2.2.
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We define the hadronization corrections to an observable O as the ratio of its value in a

perturbative calculation (“parton-level”: Oparton) and its value in a calculation including

both perturbative and non-perturbative contributions (“hadron-level”: Ohadron)

chadr.corr. = Oparton /Ohadron .

The HERWIG predictions of the hadronization corrections to the dijet cross section are shown

in Fig. 3.1 as a function of Q2 for the different jet definitions. While at Q2 � 1000GeV2 all

jet definitions have similar and reasonably small corrections (below 10%), large differences
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hadronization corrections to the dijet cross section
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Figure 3.2: Hadronization corrections to the ξ distribution of the dijet cross section for

different jet definitions.
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hadronization corrections to the dijet cross section
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Figure 3.3: Hadronization corrections to the dijet cross section as defined by the inclusive

k⊥ algorithm for the dijet mass distribution (left) and the variable η′ (right).

are seen at Q2 � 300GeV2. In all cases the corrections are smaller for the inclusive jet

definitions than for the exclusive definitions and smaller for the k⊥ ordered than for the

angular ordered algorithms. Only the inclusive k⊥ algorithm shows a small Q2 dependence

and acceptably small corrections (below 10%) even down to Q2 = 10GeV2. In Fig. 3.2 we

display the hadronization corrections differentially in the variable ξ in different Q2 regions

for the four jet algorithms. For both inclusive algorithms the corrections are small and

independent of ξ while a strong ξ dependence is observed for the exclusive algorithms. The

predictions from the different models are in good agreement for all jet algorithms even in

regions where the size of the correction is large. For the inclusive k⊥ algorithm the model

predictions agree better than 3%.

Having the smallest hadronization corrections, the inclusive k⊥ algorithm seems to be the

preferable choice for tests of perturbative QCD. We study the hadronization corrections of

this algorithm also for other dijet distributions. In Fig. 3.3 the model predictions are shown

for the distributions of the invariant dijet mass (left) and the variable η′ (right) in different

regions of Q2 and ET , respectively. Also in these variables the hadronization corrections are

flat and close to one, decreasing slightly towards higher ET .
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Figure 3.4: Hadronization corrections to the inclusive jet cross section for the inclusive k⊥
algorithm (left) and the Aachen algorithm (right).

The corrections to the inclusive jet cross section are displayed in Fig. 3.4 as a function of

the transverse jet energy ET for the inclusive k⊥ algorithm (left) and for the Aachen algorithm

(right). At small transverse jet energies 5 < ET < 7GeV the hadronization corrections are

15–20%. At ET > 7GeV (where the analysis is performed) the corrections for the inclusive

k⊥ algorithm are below 10%, decreasing slightly towards higher ET . The corrections for

the Aachen algorithm are 2–3% larger than those for the inclusive k⊥ algorithm but show a

similar ET dependence.
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The predictions of the hadronization corrections may be different for different models and

may also depend on the properties of the partonic final state that is fed into the hadroniza-

tion model. In the discussion above we have already seen that the predictions for the jet

observables under investigation are similar for the HERWIG cluster model and for the Lund

string model. For the latter we have also shown that the predictions are independent of the

partonic final state to which the hadronization is applied (the parton shower of LEPTO or

the dipole cascade of ARIADNE).
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Figure 3.5: Hadronization corrections to the dijet cross section obtained using the inclusive

k⊥ algorithm. Displayed are the LEPTO/JETSET predictions for the ET (left) and the ξ

distribution (right) for different settings of the model parameters (dotted lines) and for the

default settings (solid line).

LEPTO / JETSET model parameters default variation

ΛQCD in initial state parton shower 0.25 GeV 0.25 – 0.4 GeV

ΛQCD in final state parton shower 0.23 GeV 0.23 – 0.4 GeV

QISR
0 cutoff for initial state parton shower 1 GeV 0.7 – 2.0 GeV

QFSR
0 cutoff for final state parton shower 1 GeV 0.5 – 4.0 GeV

width of Gaussian primordial kt of partons in the proton 0.44 GeV 0.44– 0.7 GeV

width of Gaussian distribution in kt when a non-trivial

target remnant is split into a particle and a jet 0.35 GeV 0.35– 0.7 GeV

Gaussian width of pt for primary hadrons 0.36 GeV 0.25 – 0.45 GeV

a parameter in the symm. Lund fragmentation function 0.3 0.1 – 1.0

b parameter in the symm. Lund fragmentation function 0.58 0.44 – 0.7

Table 3.1: Overview of the LEPTO and JETSET parameters and the ranges in which they

are varied in the studies of the hadronization corrections.



3.2 Properties of Jet Cross Sections in Perturbative QCD 49

The model predictions may, of course, depend on the settings of the parameters that

define the perturbative parton cascade, as well as on parameters of the hadronization model.

We investigate the sensitivity of the LEPTO/JETSET model predictions to variations of

such parameters. The variations can be classified in two categories.

❍ Parameters defining the partonic final state, i.e. the evolution and the cut-off of the

parton cascade

❍ Parameters defining the hadronization model

The full list of parameters and the ranges of their variations is given in table 3.1. Fig. 3.5

gives an overview of the effects of these variations for the dijet cross section as a function

of ET (left) and ξ (right). The default setting of LEPTO/JETSET is indicated by the solid

line and all variations as dotted lines. The variations for the different parameter settings are

throughout within a few percent, i.e. of the same size as the model dependence that we have

observed before.
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One aim of the QCD analysis of the jet data is the determination of the gluon density in

the proton as a function of the momentum fraction x. The dijet cross section is therefore

measured as a function of the variable ξ which is in the leading order picture equal to the

proton momentum fraction x carried by the parton. From the ξ distribution of the data (the

results are shown in Fig. 7.8, left) one sees directly that the dijet cross section is sensitive to

fractional parton momenta in the range 0.01 < x < 0.3.

The inclusive jet cross section is measured in different regions of Q2 as a function of the

transverse jet energy ET which is not directly related to the parton momentum fraction. In

Fig. 3.6 we therefore display the x ranges which contribute to the inclusive jet cross section

in the next-to-leading order calculation in the different Q2 and ET bins of the analysis (see

Fig. 7.1). One sees that the accessible x range depends weakly on Q2 and strongly on ET .

The inclusive jet cross section covers a similar x range as the dijet cross section.

The gluon induced fraction to the total jet cross section is also shown in Fig. 3.6. At

moderate Q2 (150 < Q2 < 200GeV2) the inclusive jet cross section is dominated by gluon

induced processes which account for 72% of the cross section at lower ET (7 < ET < 11GeV)

and 45% at high ET (30 < ET < 50GeV). At higher Q2 (600 < Q2 < 5000GeV2) the latter

value is reduced to ≈ 40% and is almost independent of ET .
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Figure 3.6: The next-to-leading order prediction for the inclusive jet cross section. Displayed

is the total jet cross section (in arbitrary normalization) and the gluon induced contribution

as a function of the proton momentum fraction x carried by the parton in the Q2 and ET

bins of the analysis.
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In the present work we use the next-to-leading order calculation as implemented in the

program DISENT which includes neither contributions from Z0 exchange nor the QCD

matrix elements for massive quarks. To estimate the size of these effects we use the leading

order calculation as implemented in the program MEPJET and calculate the dijet cross

section for the inclusive k⊥ algorithm with and without these effects.

In Fig. 3.7 we show the ratios of these calculations as a function of Q2. The effects from

Z0 contributions (shown on the left hand side) reduce the dijet cross section at large Q2. At

Q2 < 2500GeV2 these corrections are, however, below 2%. Integrated over the highest Q2

bin chosen in our analysis (600 < Q2 < 5000GeV2) the effect is already negligible.

The effects of quark masses in the leading order dijet cross section (shown on the right

hand side) are 2.5% at Q2 = 10GeV2 and are decreasing towards higher Q2. At Q2 >

150GeV2 the effect is below 1.5%. Massive NLO calculations are not available for jet cross

sections, but given the small size of the effect we consider it safe to neglect this influence.
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The predictions of perturbative QCD are calculated as a power series in the strong coupling

constant αs. When calculated to all orders, the perturbative cross sections do not depend on

the choice of the renormalization and factorization scales. The truncation of the perturbative

expansion at a fixed order, however, introduces a dependence of the cross section on these

scales. Since both contributions, the truncated fixed order calculation and the higher order

corrections depend on the scales, a “good” choice of the scales can reduce the size of the

higher order corrections.

For inclusive jet and dijet production in the Breit frame in deep-inelastic scattering

only the coefficients of the leading and the next-to-leading order (i.e. O(αs) and O(α2
s)) are

known [78]. The determination of parameters of the theory, based on the next-to-leading

order approximation, is only meaningful when the contributions from higher orders (O(α3
s))

can be expected to be small. The size of these contributions depends on the choice of the

renormalization and factorization scale in the calculation. To obtain an indication of the

possible size of higher order corrections, we study the next-to-leading order (NLO) correc-

tions and the renormalization and factorization scale dependence of the jet cross sections.

Three different choices of the renormalization scale are used in these studies: μ2
r = E2

T ,

μ2
r = Q2 and μ2

r = E2
T + Q2. The factorization scale is set to the average transverse jet

energy μ2
f = 200GeV2 � 〈E2

T 〉 (see the discussion in section 8.2).
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The contributions from higher orders have not yet been calculated. If we assume, however,

that the perturbative expansion is well behaved, the contributions from higher orders should

be small in those regions where the NLO corrections are small. We define the NLO correction

(the “k-factor”) as the ratio of the NLO cross section and the leading order (LO) cross section

k ≡ σNLO

σLO
=

σ(O(αs)) + σ(O(α2
s))

σ(O(αs))
. (3.1)

This definition is, of course, only meaningful if the cross sections in the numerator and the

denominator are calculated using the same parton density functions and the same αs value.

The NLO corrections to the dijet cross section are shown in Fig. 3.8 as a function of Q2.

On the left hand side the k-factor for the inclusive k⊥ algorithm is plotted for two choices

of the renormalization scale, μ2
r = E

2

T and μ2
r = Q2. For both choices the k-factor shows

a strong Q2 dependence and becomes large at small Q2. The NLO corrections are smaller

throughout for the scale μ2
r = E

2

T than for μ2
r = Q2 (except at Q2 � 150GeV2 where the

corrections are equal since both scales are of the same size). The k-factors obtained for the

different jet definitions are compared in Fig. 3.8 (right) for μ2
r = E

2

T . For all jet definitions

we observe a similar Q2 dependence. At Q2 = 10GeV2 the k-factors are extremely large,

except for the Cambridge algorithm where a reasonably small value is found (k < 1.3).

In Fig. 3.9 we display the NLO corrections to the inclusive jet cross section in different

bins of ET and Q2 (the bins are identical to those in the subsequent analysis). The k-factor

is plotted as a function of the scale factor xμ defined as the ratio of μ2
r to the nominal value

μ2
r,0. As in the case of the dijet cross section we observe a decrease of the k-factors towards

larger Q2 for all choices of μ2
r,0. In most bins the k-factor is closest to one for μ2

r = E2
T ,
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except in the region where ET is large and Q2 is small. The scale μ2
r = E2

T +Q
2 gives always

larger NLO corrections than μ2
r = E2

T .
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The scale dependence of the cross section in the fixed order calculation is of the same

order in αs as the uncalculated higher order contributions [11] and can therefore be used

to estimate the size of these contributions. The range within which the scale dependence is

tested is, however, a matter of taste and convention. It is customary to vary the scales μ2

by a factor xμ ranging from 0.25 to 4 and quote the resulting change in the cross section

as the corresponding uncertainty. Although the resulting number has no precise meaning,

this convention allows at least a qualitative comparison of the corresponding uncertainties

between different processes.

In the following we investigate the renormalization scale dependence of the jet cross
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sections for different choices of the nominal scale. The renormalization scale dependence of

the inclusive jet cross section is displayed in Fig. 3.10 in bins of ET and Q2 (as chosen in

the analysis) for μ2
r = E2

T , μ
2
r = Q2 and μ2

r = E2
T + Q2. We see that the renormalization

scale dependence is directly related to the k-factor (c.f. Fig. 3.9). In those regions where the

k-factors are large (especially at low Q2) we also observe a large scale dependence. At large

Q2 the scale dependence is significantly reduced for all choices of μ2
r,0. For μ

2
r = E2

T the cross

section becomes even flat within the range 0.25 < xμ < 4 at high Q2 (where the k-factors

are close to one).

Similar studies have been performed for the dijet cross section using the inclusive k⊥ algo-

rithm. Fig. 3.11 shows the xμ dependence at four different values of Q2 for the leading order

and the next-to-leading order calculation using μ2
r,0 = E

2

T and μ2
r,0 = Q2. At Q2 > 500GeV2

the scale dependence is significantly reduced at NLO compared to the LO calculation for

both choices of μ2
r,0.
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At Q2 = 200GeV2 it is already visible that the scale dependence of the NLO calculation

becomes larger and at Q2 = 35GeV2 (where the k-factor is almost two) the scale dependence

of the NLO calculation is of the same size as that of the leading order calculation.

The relative change of the dijet cross section under variation of the scale μ2
r over the

range 0.25 < xμ < 4 is shown in Fig. 3.12 (left) as a function of Q2. In this plot the reduced

scale dependence for μ2
r,0 = E

2

T compared to μ2
r,0 = Q2 is clearly seen. At Q2 > 150GeV2

the scale dependence is below 10% and independent of μ2
r,0.

The factorization scale dependence of the dijet cross section is shown in the same repre-

sentation in Fig. 3.12 (right) and can be seen to be significantly smaller (below 2% over the

whole Q2 range) than that of the renormalization scale.
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The QCD predictions for the jet cross sections to be used in the QCD analysis of the jet

data fall into perturbative and non-perturbative contributions. Both parts are affected by

uncertainties which have been investigated in this chapter.
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While the perturbative contributions are well defined this is not the case for the non-

perturbative contributions. The application of predictions of phenomenological hadroniza-

tion models which are matched to parton cascade models introduces two kinds of uncertain-

ties. The first category consists of intrinsic uncertainties of the model predictions. These

have been estimated by comparing the differences between different models and by varia-

tions of model parameters and are found to be of the order of a few percent. The second

uncertainty concerns the ambiguity when applying the (unmatched) model predictions to

next-to-leading order calculations. Investigations on this topic have been performed in a

previous publication [53] based on comparisons of the final state topologies in parton cas-

cade models and NLO calculations. It was found that although some properties (such as

angular jet distributions) are very similar, other final state properties (such as the internal

jet structure) are very much different.

In summary we draw the conclusion that the phenomenological models can be used to

compare the size of the hadronization corrections for different observables. The application

of these corrections to NLO calculations introduces uncertainties which can not be reliably

estimated. Such a procedure should only be used when the estimated corrections are small,

i.e. not much larger than 10%. As we have shown in this chapter this is the case for the

inclusive jet definitions (inclusive k⊥ and Aachen algorithm) if sufficiently hard cuts on the

transverse jet energies are applied (ET > 7GeV). The inclusive jet algorithms shall therefore

be used in this analysis to obtain the main results. The exclusive jet algorithms for which

the hadronization corrections are very large (up to 60%) are only used to demonstrate the
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consistency of the procedure.

For the inclusive jet algorithms the uncertainties from the model and parameter depen-

dence of the predictions are always below 3%. We take the uncertainty due to the matching

of the parton level into account by increasing the quoted uncertainty in those kinematic

regions where the corrections are large. In detail we define the uncertainty for each bin of

the observables to be half of the size of the correction, but at least 3%.

For the hadronization corrections we use the averages of the model predictions by HER-

WIG, LEPTO and ARIADNE.
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The perturbative QCD calculations in next-to-leading order depend on two purely technical

parameters, namely the renormalization and the factorization scale.

We have shown that the factorization scale dependence is very small (below 2%). The

choice of a fixed value of the factorization scale of μ2
f = 200GeV2 � 〈E2

T 〉 for the QCD

analysis is motivated later in section 8.2.

The renormalization scale dependence of the jet cross sections is seen to be directly related

to the size of the next-to-leading order corrections. We have shown that the NLO corrections

are sizable at Q2 � 100GeV2 (the k-factor being larger than 1.5). We conclude that in this

kinematic region the NLO calculation is only a poor approximation of perturbative QCD

and not predictive since contributions from higher orders in αs may be large. This means

that jet data measured in this region can not be used for precise determinations of αs and

the gluon density in the proton.

In the region of large momentum transfers Q2 � 150GeV2 the renormalization scale

dependence and the NLO corrections are reasonably small (the k-factors are below 1.4 and

decreasing towards larger Q2). In most phase space regions both effects are smaller for the

scale μ2
r = E2

T than for μ2
r = Q2. We therefore decide to use μ2

r = E2
T to obtain the main

results of this analysis. A further motivation for this choice is the fact that in jet production

(in deep-inelastic scattering as in in other processes) the transverse jet energy E2
T is the

physical scale at which hard QCD radiation is resolved.

The uncertainties of the NLO calculations from the renormalization and factorization

scale dependence are defined as the relative change of the cross sections when the respective

scale is varied by a factor xμ in the range 0.25 < xμ < 4.
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The “Deutsches Elektronen-Synchrotron” (DESY) in Hamburg, Germany, started a series

of high energy physics experiments in the year 1964 with the electron-synchrotron. In sub-

sequent years the e+e− colliders DORIS and PETRA were added. The construction of the

“Hadron-Electron Ring Accelerator” (HERA) started in 1984 and in 1991 HERA was put

into operation. HERA is the first electron-proton collider in the world. The electron-proton

center-of-mass energy of
√
s � 300GeV is by more than a factor of ten larger than those

reached in previous electron-proton scattering experiments with fixed proton targets.

In this chapter we give a brief overview of the HERA collider and the layout of the H1

detector and we describe those detector components that are needed for the measurement

of jet cross sections at large momentum transfers. We introduce different methods to re-

construct the event kinematics and give an outline of the experimental method of unfolding

measured data distributions.
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The HERA collider consists of two separate storage rings, placed in a subterranean ring tun-

nel of 6.3 km circumference. Electrons (or positrons) and protons are separately accelerated

up to energies of 27.5GeV and 820GeV respectively, and brought to collision at the North

Hall and the South Hall where the multi-purpose detectors of the H1 and the ZEUS experi-

ments are located1 (Fig. 4.1, left). These experiments have been taking data since 1992. The

fixed target experiments HERMES and HERA-B are located in the West Hall and in the

East Hall. Since 1995 the HERMES experiment measures collisions of the polarized positron

beam with polarized gas targets (H2, D, 3He, 4He) to study phenomena related to the spin of

the target particles. The HERA-B experiment utilizes the proton beam by inserting tungsten

wire targets into the beam halo, to search for decay modes of the B0-B̄0 system, indicating

a violation of the combined charge conjugation and parity (CP) conservation.

1The present analysis is based on the data taken between April 1994 and 1997 where HERA was operated

with positron beams rather than electron beams because the former showed a much larger lifetime. In 1998

the protons were accelerated to 920GeV and the positron beam was again replaced by an electron beam.
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Figure 4.1: The electron-proton collider HERA (left), and the area of the DESY (right)

including the preaccelerators LINAC I–III, DESY I–III and PETRA.

The protons are produced by passing H− ions (accelerated to an energy of 50MeV in

LINAC III) through a stripper foil. The protons are collected in bunches and accelerated in

DESY III (to 7.5GeV) and in PETRA (to 40GeV) before they are injected into HERA.

Positrons are provided by a 500MeV linear accelerator, and are accelerated in DESY II

(to 7GeV), in PETRA (to 12GeV) and are finally injected into HERA (Fig. 4.1, right). The

positrons and protons are stored in typically 190 colliding bunches, with a length of ≈ 8mm

(110mm) and typical currents of 30mA (80mA) for the positrons (protons). The bunch

crossing interval is 96 ns, corresponding to a bunch crossing rate of 10.4MHz. The lifetime

of the positron (proton) beam is ≈ 10 (100) hours.

The HERA laboratory frame is defined by a right-handed coordinate system where the

positive z-axis points along the proton beam direction. The x-axis and the y-axis point to

the center of the HERA ring and upwards respectively. The nominal interaction point is

taken as the origin. Polar angles θ are defined with respect to the positive z-direction and

azimuthal angles φ are defined such that φ = 0 points to the positive x-direction.
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The final state particles from the positron-proton collisions are detected by the HERA de-

tectors H1 and ZEUS. Both are designed as nearly hermetic multi-purpose detectors. An

isometric view of the H1 detector is shown in Fig. 4.2. To account for the asymmetric beam

energies of the colliding particles the forward region (i.e. the region towards the proton direc-

tion) is equipped with enhanced instrumentation. A detailed description of the H1 detector

can be found in [79]. In the measurement of jet cross sections in deep-inelastic scattering,
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Figure 4.3: Side view of the tracking system in the H1 detector and the backward calorimeter

(SPACAL)

the liquid argon (LAr) calorimeter, the backward calorimeter, the tracking chamber system

and the luminosity detectors are of particular importance.
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The H1 tracking system includes three major components which cover polar angles in the

range of 5◦ < θ < 178◦ with full azimuthal coverage (Fig. 4.3). The central tracking cham-

bers and the forward track detector are placed around the beam pipe between z = −1.5 and

z = 2m. The backward drift chamber (BDC) is located in front of the backward calorime-

ter. A superconducting solenoid, which surrounds both the tracking system and the LAr

calorimeter, provides a uniform magnetic field of 1.15T.
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The central tracking device consists of six chambers in total which are housed in an aluminum

tank. The main components are the two concentric drift chambers (CJC1, CJC2) with wires

strung parallel to the beam axis. They cover the range of polar angles 15◦ < θ < 165◦.
The transverse momenta of charged particles are measured with a resolution of δpT/pT <

0.01 · pT/GeV. Two polygonal drift chambers with wires strung perpendicular to the beam

axis improve the determination of the z coordinate and complement the measurement of the

track momenta. These are the central inner and central outer z-chambers (CIZ, COZ) which

are placed at radii of 18 cm (CIZ) and 47 cm (COZ). They achieve a z resolution of typically

300μm. The central tracker is completed by two Multi-Wire Proportional Chambers: The

central inner proportional chamber (CIP) and the central outer proportional chamber (COP)
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nominal interaction point

Figure 4.4: Side view of the H1 liquid argon calorimeter. The upper part shows the structure

of the absorber plates, the lower part shows the cell structure.

which deliver a fast trigger signal with a time resolution better than the 96 ns separation

time between consecutive HERA bunch crossings.

The central tracking chambers are used in this analysis to reconstruct the event vertex and

to measure the polar angle of the scattered positron and the momenta of charged particles

of the hadronic final state.
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The forward track detector which covers the polar angular range 5◦ < θ < 25◦ is composed

of a tracking chamber system made of three identical modules aligned along the z direction.

Each module consists (in increasing z) of a planar drift chamber, a multi-wire proportional

chamber, transition radiators, and a radial drift chamber. In the present analysis the forward

track detector is used to determine the interaction vertex for events without tracks in the

CJC.
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The H1 detector comprises four subdetectors, each with full azimuthal acceptance, de-

signed to measure the energy of scattered particles: The liquid argon (LAr) calorimeter,

the spaghetti calorimeter (SPACAL), the tail catcher and the plug calorimeters. The main
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Figure 4.5: Radial view of the octant and cell structure of the CB1 ring of the H1 Liquid

Argon calorimeter

component is the LAr calorimeter which covers the central and the forward region, while the

backward region is covered by the SPACAL. The instrumented iron of the return yoke for

the magnetic field (the tail catcher) is used for muon identification and to provide a rough

calorimetric measurement of hadronic particles leaking out of the LAr calorimeter. In this

analysis it is mainly used to reject muon induced background. The plug calorimeter (not

used in this analysis) closes the gap in acceptance between the LAr calorimeter and the

beam pipe in the forward direction.
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The finely segmented liquid argon (LAr) calorimeter [80] is situated inside the solenoid

to reduce the amount of uninstrumented material particles have to traverse before they

are absorbed in the calorimeter. It consists of an electromagnetic section and a hadronic

section, both contained in a single liquid argon cryostat, and covers a polar angular range

of 4◦ < θ < 154◦. It is segmented along the beam axis in eight self supporting wheels.

The wheels are constructed from eight identical stacks or octants (Figs. 4.4 and 4.5). The

two forward wheels (IF1 and IF2 in Fig. 4.4) are assembled as two half rings in an effort

to minimize uninstrumented regions due to cracks. Every wheel of the LAr calorimeter is

divided into an inner electromagnetic section with lead absorber plates and an outer hadronic

section with steel absorber plates (in both cases liquid argon is used as the active material).

The most backward wheel, the BBE, has only an electromagnetic section. Both sections

are highly segmented in the transverse and longitudinal directions with about 44 000 cells in

total. The electromagnetic part has a depth between 20 and 30 radiation lengths. The total

depth of the LAr calorimeter varies between 4.5 and 8 hadronic interaction lengths. The

LAr calorimeter is non-compensating. The charge output for hadrons is about 30% smaller
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Electron Tagger �ET�

EET � ���� GeV

Photon Detector �PD�

EPD � ���� GeV

H� Luminosity System

IP

Figure 4.6: A Bethe-Heitler bremsstrahlung event measured in the H1 luminosity system

than for electrons of the same energy. A weighting technique is employed offline to correct

for this effect.

The LAr calorimeter is used in this analysis to measure the scattered positron at large

four-momentum transfers (Q2 � 100GeV2) and to measure the energy flow of the hadronic

final state. The systematic uncertainty of the electromagnetic energy scale is between 0.7%

and 3% (depending on the wheel). The uncertainty of the hadronic energy scale of the LAr

calorimeter is 2% for the inclusive DIS measurement [32, 81]. For measurements of exclusive

final states, however, the uncertainty is 4% (see the related discussion in section 5.5).

��� 6&�-�7

The backward region is covered by a lead/scintillating fiber calorimeter (SPACAL) [82]

(154◦ < θ < 177.8◦). It consists of an electromagnetic and a hadronic section with a total

depth of two hadronic interaction lengths. In the present analysis it is used to measure the

hadronic energy flow in the backward direction. The hadronic energy scale uncertainty of

the SPACAL is 7%.
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The cross section of a given process σprocess is related to the observed number of events of

this process Nprocess according to

σprocess =
Nprocess

Lint

, (4.1)
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where Lint denotes the integrated luminosity represented by the data set. The measurement

of any cross section therefore requires a precise knowledge of Lint. The integrated luminosity

can be determined by measuring the event rate of a process with a well known cross section.

In the H1 experiment the elastic bremsstrahlung ep → eγp (Bethe-Heitler process) is used

for this purpose. Both, the scattered positron and the emitted photon, are measured by

two detectors installed close to the positron beam in the HERA tunnel (Fig. 4.6). The

electron tagger (ET) and the photon detector (PD) are situated at z positions of −33.4m

and −102.8m respectively. The uncertainty of the luminosity measurement is 1.5% for the

data sample considered in this analysis.
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Background induced by reactions of the proton beam with residual gas particles and in-

teractions with the wall of the beam pipe can be rejected by using time-of-flight (ToF)

information. For this purpose scintillators with a time resolution of 2–4 ns are mounted

around the beam pipe at both ends of the detector. Based on the precise timing knowledge

of the bunch crossings in the detector provided by the HERA machine (HERA clock), this

time resolution allows to distinguish between signals from proton induced background and

actual collision events at a particular point in the detector.

1#"#3 �����
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At HERA the positron and the proton bunches collide with a frequency of 10.4MHz. The fre-

quency by which the various detector components deliver signals is of the order ∼ 10 kHz [79].

Since the expected rate of events from positron-proton collisions is significantly smaller the

largest contribution comes from background processes as e.g. synchrotron radiation from the

positron beam, proton gas interactions and stray protons which produce particle showers by

hitting the beam pipe.

The task of the trigger system is to reject background events and to select events that

originate from positron-proton collisions out of the data flow of signals registered in the

various detector components for permanent recording. The H1 trigger system used for the

online selection consists of three active levels plus one level which is used in the offline

reconstruction step. Events are recorded at a rate of ≈ 10Hz.
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At a fixed center-of-mass energy
√
s the kinematics of a deep-inelastic scattering event is

given by two independent variables. The H1 detector allows to measure the energy and the

scattering angle of the positron as well as the energies and angles of the hadronic final state

particles. This allows the application of various methods to reconstruct the event kinematics.

These methods differ in the resolution of the kinematic variables, since the input quantities

are measured at a different precision. Furthermore, even for a perfect measurement, exact

agreement between these methods cannot be expected. Different methods are in different

ways sensitive to QED corrections, as the emission of photons collinear to the positron beam,

which escape through the beam pipe.

The redundancy in the measurement can be used to combine the different variables to

optimize the experimental resolution of the kinematic variables and reduce the sensitivity to

QED radiation.
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The “Electron Method” [83] is based on the information of the energy E ′ and the polar angle

θe of the scattered positron to determine the kinematic variables according to

Q2
e = 2E0E

′ (1 + cos θe) , (4.2)

ye = 1 − E ′

2E0
(1− cos θe) ,

xe =
Q2

e

ye s
,

where E0 denotes the positron beam energy. The Electron Method gives a very good reso-

lution of the four-momentum transfer squared Q2. At small values of y (corresponding to

large xBj) the y and xBj resolutions decrease.
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The “Hadron Method” [84] has been proposed to reconstruct the kinematic variables in

charged current events where the scattered neutrino can not be detected. It relies solely on

the measurement of the energies and the angles of the hadronic final state particles. The

kinematic variables are obtained as

Q2
had =

(
∑

had px)
2 + (

∑
had py)

2

1− yhad
, (4.3)

yhad =

∑
had(E − pz)

2E0

xhad =
Q2

had

yhad s
.
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The sums run over particles2 of the hadronic final state (where the scattered positron is

excluded). The Hadron Method gives a poor resolution of Q2 and xBj.
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The “Double Angle Method” [83] uses only the angles of the final state particles. The

kinematic variables are given by

Q2
da = 4E2

0

sin γ (1 + cos θe)

sin γ + sin θe − sin(θe + γ)
, (4.4)

yda =
sin θe (1− cos γ)

sin γ + sin θe − sin(θe + γ)
,

xda =
Q2

da

yda s
.

The angle γ is defined by

cos γ =
(
∑

had px)
2 + (

∑
had py)

2 − (
∑

had(E − pz))
2

(
∑

had px)
2 + (

∑
had py)

2 + (
∑

had(E − pz))2
, (4.5)

where the sums run over all particles of the hadronic final state. The advantage of this

approach is the insensitivity to the absolute calorimetric energy calibration. It is, however,

sensitive to the relative calibration between different detector components. Since such un-

certainties are very hard to determine and quantify, it is nearly impossible to determine

the corresponding uncertainties for a measured cross section. We will therefore not use this

method in the cross section measurements.
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The previous methods are all sensitive to the radiation of photons, collinear to the incoming

positron. This sensitivity can be reduced by using the “Sigma Method” [85] which exploits

the redundancy of the measurements to eliminate the value of the positron beam energy in

the formulae. From energy and longitudinal momentum conservation it follows∑
final state

(E − pz) =
∑

initial state

(E − pz) ,

=⇒
∑

(E − pz) ≡
∑
had

(E − pz) + E ′ (1 + cos θe) = 2E0 . (4.6)

From transverse momentum conservation we have(∑
had

px

)2

+

(∑
had

py

)2

= E ′2 sin2 θe . (4.7)

2The term “particle” refers here either to calorimetric energy clusters or measured track momenta.
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Inserting the identities (4.6) and (4.7) in the definition of the Hadron Method (4.3) we obtain

the formulae for the Sigma Method

Q2
Σ =

E ′2
e sin2 θe
1− yΣ

, (4.8)

yΣ =

∑
had(E − pz)∑

had(E − pz) + E ′
e (1− cos θe)

,

xΣ =
Q2

Σ

yΣ s
.

The so-defined variables Q2
Σ and xΣ give a better resolution than those from the Hadron

Method.
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While the Sigma Method is less sensitive to QED radiation and gives a better x resolu-

tion than the Electron Method, it suffers from an inferior resolution in Q2. An optimized

method can therefore be defined by combining the Q2 from the Electron Method and the

xBj measurement from the Sigma Method in the “Electron-Sigma Method” [86]

Q2
eΣ = Q2

e , (4.9)

xeΣ = xΣ ,

yeΣ =
Q2

eΣ

xeΣ s
.

This method has been used in a recent H1 structure function measurement at high Q2 [32, 81]

and will also be used in the present analysis. In appendix A we demonstrate its advantage

to the Electron Method in the reconstruction of the boost vector to the Breit frame.
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In any experimental measuring device with limited resolution the true value of an observable

is distorted and subject to random fluctuations. Further restrictions in the reconstruction of

observables may arise e.g. from limitations in the detector acceptance and from inefficiencies

in the data selection. Comparisons of such “primary observations” to the predictions of a

physical theory require a precise knowledge of the properties of the measuring device, the

so-called “detector response function”.

Folded with the detector response function the theoretical prediction can be compared

to the reconstructed data. Although this approach is straightforward, it prevents comparing

measurements of the same observable from different experiments with different measuring

devices (in which in general the effects of resolution are different).

A different approach is to “unfold” the data for the detector effects. The unfolded

distributions are independent of the measuring device and can therefore be directly compared

to theoretical predictions and also between different experiments.

In the following we introduce the unfolding procedure to be used in the present analysis,

and describe how the detector response is determined.
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We consider binned distributions where Ôj denotes the true value of the j-th bin of an

observable. The reconstructed value of the i-th bin of this observable Oi is related to the

true distribution by a folding with the detector response matrix Dij

Oi =
∑
j

Dij Ôj . (4.10)

The response matrix element Dij represents the conditional probability that an event will be

reconstructed in bin i of the observable given that the true value was in bin j. For complicated

measuring devices the response matrix can often not be determined analytically. In such

a case it is possible to use a model of the detector that simulates the response to single

events. A sample of events with similar properties as observed in the data can be generated

and passed through the detector simulation. If the correlation between the generated values

of the observable and the values reconstructed after the detector simulation is known, the

response matrix D can be determined [87].

In principle the true distribution Ôj can then be obtained through the inversion of the

matrix Dij . This procedure, however, leads to unstable and oscillating solutions with large

errors [87]. A damping of the oscillations (and correspondingly a reduction of the errors)

can be achieved by imposing additional restrictions on the solution as e.g. in the unfolding

procedures described in [88, 89]. These approaches allow to handle migrations between

different bins.
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In most applications it is desirable to have results without significant correlations between

single data points. The correlations between bins which arise from migrations of events can

be avoided by choosing the bin sizes appropriately large. When migrations between bins are

negligible, the off-diagonal elements (i �= j) of Dij vanish and the solution of (4.10) is simply

given by

Ôi = Ci,detector · Oi , (4.11)

where Ci,detector ≡ D−1
ii . The convolution in (4.10) reduces therefore to a simple bin-by-bin

correction. The values of the Ci,detector can be determined from the simulated events as the

ratios of the generated (Ŝi) and the reconstructed values (Si) of the observables

Ci,detector =
Ŝi

Si
. (4.12)

The solution Ôi of (4.11) corresponds to the measured observable corrected for detector

resolution and acceptance.

The applicability of this method is not restricted to problems where migrations between

bins are small. However, in cases where migrations between bins are not negligible this

procedure may bias the result if the distribution of the observable in the simulated events

differs from the data [87]. To apply this method (at least) one of two conditions should

therefore be fulfilled.

❍ Migrations between bins are small.

❍ The simulated events describe all details of the reconstructed data sample.

In the present analysis we aim to fulfill both requirements. We will demonstrate that the

simulated events describe the reconstructed data (chapter 5) and we will choose the bin

widths sufficiently large to keep migrations between bins relatively small (chapter 6).

Furthermore we use two different models with slightly different properties to generate

the events. In chapter 5 we show that for most distributions the data are in between the two

model predictions. Differences in the corresponding correction factors can thus be regarded

as a rough estimate of the uncertainty introduced by the possible bias.
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It may be desirable to unfold the data also for physical effects which are not included in the

theoretical predictions to be compared to the results. In our case this concerns higher order

QED corrections connected to real photon emissions from the positron (in the initial state or

in the final state) and virtual corrections at the leptonic vertex as represented by the diagrams

in Fig. 2.8 (a-c). We do not unfold the corrections from the fermionic contributions to the
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virtual photon self energy (Fig. 2.8 d) which account for the running of the electromagnetic

coupling constant since these are included in the theoretical calculations (see section 2.3).

To take into account the mentioned effects we introduce a second correction factor defined

as the ratio of the observable in a calculation without QED corrections (Ŝi,w/oQEDcorr.)

and a calculation including QED corrections (Ŝi, incl.QEDcorr.) but otherwise identical physics

assumptions

Ci,QED ≡ Ŝi,w/oQEDcorr.

Ŝi, incl.QEDcorr.

. (4.13)

The unfolding of detector effects and QED corrections is then performed in two steps. Com-

bining (4.12) and (4.13) the total correction factor is given by

Ci, total ≡ Ci,detector · Ci,QED , (4.14)

and the corrected data distribution is obtained as

Ôi = Ci, total · Oi . (4.15)

Since the event sample to be subjected to the detector simulation also includes higher order

QED corrections, the factors Ŝi in (4.12) and Ŝi, incl.QEDcorr. in (4.13) are defined identically

such that they would cancel in the total correction factor (4.14).

However, for practical reasons we use different event samples to determine Ŝi and

Ŝi, incl.QEDcorr.. The simulation of the detector response is time consuming such that the

value of Si is determined with non-negligible statistical uncertainties. If Ŝi is calculated

from the same data sample part of the statistical fluctuations cancel in the ratio (4.12).

The computation of Ŝi,w/oQEDcorr. and Ŝi, incl.QEDcorr. does not require the simulation of the

detector response and can thus be performed with high statistical precision.

While the total correction factor could in principle be calculated in a single step, the

separation in (4.14) allows to disentangle the contributions from detector effects and the

QED corrections. This, however, requires a suitable definition of the intermediate level,

which includes QED corrections. In the presence of QED corrections (as the emission of real

photons from the positron) the event kinematics are not longer uniquely defined. To separate

the detector effects from the QED corrections we define the intermediate level according to

the resolution and acceptance of the H1 detector at which radiated photons are detected. For

this purpose we divide generated events with final state photons, radiated from the positron,

into three classes.

❍ Experimentally, photons with an angle of Ωeγ < 7◦ to the scattered positron can not

be resolved from the positron [90]. In the generated events we therefore recalculate the

four-vector of the scattered positron from the sum of the original positron four-vector

and the four-vector of the photon if Ωeγ < 7◦ and exclude the photon from the final

state.
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❍ Photons with a polar angle of θγ > 178.5◦ escape the detection in the backward

calorimeter through the beam pipe. If the energy of a generated photon with θγ >

178.5◦ is above Eγ = 5GeV the event is ignored. This emulates the effect of the selec-

tion cut (5.5) on
∑

(E − pz) > 45GeV (see the related discussion in section 5.1.3). If

Eγ < 5GeV the event is kept but the photon is excluded from the final state.

❍ In all other cases we have isolated photons which are within the acceptance of the

calorimeters. Since we do not attempt to identify these photons in the experiment,

we also consider the corresponding generated photons as a part of the hadronic final

state.

Based on the re-defined four-vectors of the scattered positron and the hadronic final state

the event kinematics is calculated according to the same reconstruction method that is also

used to reconstruct the data.
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To determine the detector response Ci, detector we generate two event samples which are both

subjected to a detailed simulation of the H1 detector, based on the program GEANT [91].

The events are generated by the Monte Carlo programs LEPTO [65] and ARIADNE [67]

which have been introduced in Section 2.3. Both programs are interfaced to the program

HERACLES [73] via the program DJANGO [72] to include higher order QED corrections.

LEPTO (version 6.5) is used without the soft color interaction model. The LEPTO event

sample represents an integrated luminosity of Lint � 87 pb−1 using parton distributions from

the CTEQ4L parameterization [77].

The event sample for ARIADNE (version 4.08) is generated using parton distributions

from the MRSH parameterization [92] and corresponds to an integrated luminosity of Lint �
162 pb−1. Further ARIADNE events are generated at Q2 > 1000GeV2 corresponding to

Lint � 392 pb−1.

To investigate the probability with which photoproduction events are misidentified as

deep-inelastic scattering events, we have generated photoproduction events using the gener-

ator PYTHIA [93]. The PYTHIA event sample consists of so-called “direct” and “resolved”

photoproduction events corresponding to an integrated luminosity of Lint � 100 pb−1.

The integrated luminosities of the simulated Monte Carlo event samples are at least a

factor of three above the integrated luminosity of the H1 data of Lint � 33 pb−1 used in the

present analysis.

To determine the QED corrections we have generated the same LEPTO and ARIADNE

event samples as above, respectively with and without the inclusion of QED corrections.

Each of these single event samples corresponds to Lint � 1000 pb−1.
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In this chapter we describe the selection of deep-inelastic scattering events at large four-

momentum transfer and the reconstruction of hadronic jets in the Breit frame. The global

selection of DIS events (which is based on standard reconstruction methods) is only discussed

briefly. Emphasis is put on the details related to the jet selection and to the study of various

categories of distributions, such as kinematic event quantities, general hadronic final state

properties and properties of single jets.

Distributions of simulated events from Monte Carlo event generators are compared to

the data. We intend to show that the data are technically well understood. We demonstrate

that the Monte Carlo event simulations give a sufficiently good description of the detector

calibration and of all event properties, to be used in the unfolding procedure of the data

(according to the criteria discussed in the previous chapter).
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The data employed in this analysis have been taken by the H1 experiment in the HERA

running periods of the years 1995–1997. The selection of deep-inelastic scattering events

follows closely the one used in a recent measurement of the inclusive ep cross section at

large four-momentum transfer [32]. We have benefited very much from the detailed studies

which have been performed in this context, documented in detail in the Ph.D. thesis of

B. Heinemann [81]. Here we will only give a brief discussion of the basic selection criteria

and document the corresponding control distributions only for the jet sub-sample. Although

the selection cuts are discussed one after the other, at each step the control distributions are

shown for the data sample with all selection cuts applied (except where noted).

The cuts, applied in the selection of the data can be grouped in two classes: Phase space

cuts and technical cuts. The first class contains the kinematic cuts that define the phase

space of the final (corrected) observables. These are the cuts in the kinematic variables y

and Q2 (reconstructed by the Electron-Sigma Method which utilizes information from the

scattered positron and the hadronic final state) and the jet selection cuts as introduced in

section 2.4 and summarized in table 5.1. The second class contains cuts on the event quality,

77
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DIS event selection 0.2 < y < 0.6

150 < Q2 < 15 000GeV2

global jet selection (all jet cross sections) −1 < ηjet, lab < 2.5

incl. jet cross section incl. k⊥ algo. / Aachen algo. ET,Breit > 7GeV

(ET recomb. scheme)
dijet cross section incl. k⊥ algo. / Aachen algo. ET,1,Breit + ET,2,Breit > 17GeV

(ET recomb. scheme) ET,Breit > 5GeV

excl. k⊥ algo. / Cambridge algo. (reference scale)2 = 100GeV2

(E recomb. scheme) ycut = 1

three-jet cross section incl. k⊥ algo. ET,Breit > 5GeV

(ET recomb. scheme) M3jet > 25GeV

four-jet cross section incl. k⊥ algo. ET,Breit > 5GeV

(ET recomb. scheme) M4jet > 25GeV

Table 5.1: A summary of the phase space definitions for the jet cross section measurements.

The detailed definitions are given in section 2.4.

which are designed to improve the experimental resolution and to reduce the influence of

badly reconstructed events and background processes. The fractional signal that is lost by

these cuts is corrected for in the unfolding procedure. Only for some cuts (where explicitly

stated) the corrections have been determined and directly applied to the data.
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The analysis includes all data taken while the main detector components were fully op-

erational. These include the main calorimeters (LAr and SPACAL), the tracking system

(CJC1, CJC2, CIP, COP), the luminosity system and the time of flight counters. Runs, in

which coherent noise was detected in the LAr calorimeter are excluded. The resulting data

set corresponds to an integrated luminosity of Lint = 33 pb−1 (the years 1995, 1996, 1997

contribute 3.8 pb−1, 7.9 pb−1, 21.3 pb−1 respectively).

Neutral current events at high Q2 are triggered by the positron trigger of the LAr

calorimeter. The investigations in [81] have shown that for the present data sample (where

the positron energy is E ′ � 13GeV) the trigger efficiency is 100% with an uncertainty of

0.5%.

To reduce contributions from background we require that the timing signal of the in-

teraction (delivered by the CJC) lies within ±20 ns of the nominal interaction time of the

current bunch crossing or one bunch crossing before or after that. In [81] it has been shown

that this cut reduces the signal by 0.4% (for which we reweight the remaining events).
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The selection of neutral current DIS events is based on the identification of the scattered

positron and the reconstruction of the z-position of the event vertex.
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Figure 5.1: The distribution of the reconstructed z-position of the event vertex, for the

inclusive DIS event sample (left) and for the dijet event sample (right).

In the present analysis we require that the z-position of the event vertex, reconstructed

using central or forward tracks, lies within ±35 cm of its nominal position at −1 cm. The

distribution of the z-vertex position is shown in Fig. 5.1 for the inclusive DIS event sample

(left) and for the dijet sample (right), together with the distributions of the simulated events,

which have been reweighted to give an optimized description of the z-vertex distribution.

The vertex finding efficiency is 100% and well described by the simulation [81].

In events at high Q2 the positron is scattered with high energy under a large polar

angle and therefore expected to produce a compact and isolated energy cluster with large

transverse momentum in the electromagnetic part of the LAr calorimeter [94]. We select

events in which the cluster of a positron candidate fulfills these requirements (specified in

detail in [81]). If the polar angle of the positron cluster lies within the acceptance of the

central tracker (θcluster > 35◦) we require a track pointing to the positron cluster with a

distance of closest approach (DCA) dDCA < 12 cm (when extrapolated to the calorimeter

surface). The investigations performed in [81] have shown that the requirement of a track-

link introduces a 2.2% larger inefficiency in the data than in the simulation. We take this

into account by applying a corresponding correction factor to the simulation.

The positron energy is taken from the calorimetric energy measurement. If a track is

matched to the positron cluster, the polar and azimuthal angle are taken from the track

measurement (or otherwise from the cluster position).

The standard reconstruction corrects for the energy loss in the dead material in front

of the calorimeter and for losses in the cracks between the calorimeter modules. A high

precision in the energy measurement, however, requires to limit the size of these corrections

by excluding certain crack regions, based on the impact position of the positron in the

calorimeter. These are the regions of ±2◦ in the azimuthal angle around the eight φ-cracks

(see Fig. 4.5) and ±5 cm around the z-crack at z = +20 cm between the CB2 and CB3
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wheels of the LAr calorimeter (see Fig. 4.4). Furthermore in the backward part of the

BBE wheel (see Fig. 4.4) the electromagnetic shower of the positron is not fully contained

in the calorimeter. Therefore we exclude the region z < −180 cm. Within the remaining

acceptance region the positron finding efficiency is very high (> 99%) and well modeled by

the simulation [81].

In three regions in the z-φ plane the positron trigger is not fully efficient. Events with

positrons in these regions are therefore excluded. In total we apply the following cuts on the

impact point of the positron (ze, φe) in the calorimeter

z-crack + 15 cm < ze < +25 cm , (5.1)

BBE acceptance ze > −180 cm , (5.2)

φ-cracks φe ∈ (n · 45◦)± 2◦ (n = 0, 1, · · · , 7) , (5.3)

ineff. trigger − 60 cm < ze < 20 cm and −135◦ < φe < −112.5◦ , (5.4)

−90 cm < ze < −60 cm and 135◦ < φe < 157.5◦ ,

−120 cm < ze < 20 cm and 90◦ < φe < 112.5◦ .

We correct for the event loss due to cuts (5.3) and (5.4) by using the symmetry in φ and

reweight the remaining events corresponding to the fraction of the excluded φ range (which

depends on z).

In Fig. 5.2 the distributions of the energy, the polar angle and the azimuthal angle of

the positron candidates are displayed. The latter shows the effect of the cuts in the z-φ

plane. While the distributions of the energy and the azimuthal angle are well described by

the simulation, we observe differences in the polar angle spectrum for both models. This

is directly connected to the fact that the Q2 dependence of the dijet cross section is not

described by LEPTO and ARIADNE (as will be discussed later). We note, however, that

the data distribution is always between both model predictions.
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When a positron candidate has been accepted, all corresponding calorimetric cell energies,

clusters and the associated track are excluded from the further reconstruction of the hadronic

final state. The same applies to all tracks and clusters within a radius of ΔR = 0.5 (in the

η, φ plane) around the reconstructed positron direction.

The hadronic final state is then reconstructed by combining the calorimetric energy

measurement and the momenta of low momentum tracks according to a procedure that avoids

the double counting of energies [32]. For this purpose all central tracks with a transverse

momentum of pT < 2 GeV are considered. The axis of each accepted track is then extra-

polated to the LAr calorimeter. If the energy in the electromagnetic (hadronic) part of the

LAr calorimeter in a cylinder of 15 cm (25 cm) radius around this axis is smaller than the

corresponding track energy it is excluded from the measurement. If the total energy in the

cylinders is greater than the track energy, only the calorimetric energy measurement is used.
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Figure 5.2: The distributions of the energy (left), the polar angle (right) and the azimuthal

angle (center) of the positron candidates in the dijet sample for the inclusive k⊥ algorithm.

The fractional contributions from the calorimeters and the trackers to the hadronic final

state are shown in Fig. 5.3 for the final dijet sample where all selection cuts are applied. On

the left are the different contributions to the transverse energy of the hadronic final state

as a function of the total transverse energy. The contribution from the SPACAL is small

(below 2%) and the contribution from the track measurement decreases from 30% to 8%

towards larger
∑
ET . The right plot shows the same for the variable yhad as reconstructed

by the Hadron Method according to (4.3). This variable is sensitive to the longitudinal

energy flow of the hadronic final state, especially in the backward direction. Correspondingly

the contribution of the SPACAL is slightly larger in this distribution (typically 4% and at

most 6%). The track contribution is ≈ 20%, independently of yhad. The fractional energy

contributions from the different detector components are well modeled by the simulated

events.

From (4.6) we expect that in a deep-inelastic scattering event the sum of all (E − pz) in

the final state (including the scattered positron) should be equal to 55GeV if all energy in
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Figure 5.3: The fractional contributions from the single detector components to the recon-

structed transverse energy of the hadronic final state (left) and to the reconstructed variable

yhad in the dijet event sample (right).

the event is measured correctly. When particles in the event have escaped through the beam

pipe in negative z-direction, the
∑

(E− pz) is lowered by twice their energy. This is e.g. the

case in photoproduction events where the positron is scattered at θe → 180◦ and a particle

from the hadronic final state is accepted as the positron candidate. In cases where photons

are radiated collinear to the initial state positron, they also escape undetected through the

beam pipe and the sum is reduced by twice the photon energy. We require
∑

(E− pz) to be

within ±10GeV around its expectation value

45GeV <
∑

(E − pz) < 65GeV . (5.5)

For perfectly measured events this corresponds to a cut against collinear radiated photons

of energies Eγ > 5GeV. The distribution of
∑

(E− pz) is shown in Fig. 5.4 for the inclusive

DIS sample (left) and for the dijet sample (right). In the dijet sample the distribution is

peaked more sharply and, unlike in the inclusive DIS sample, the cut affects only small tails.

Both the data and the simulated distributions are peaked at the nominal value of 55GeV.

Having defined the hadronic final state, we can calculate the event kinematics using the

Electron-Sigma Method, as introduced in (4.10), and apply the phase space cuts on the

kinematic variables

0.2 < yeΣ < 0.6 and 150 < Q2
eΣ < 15 000GeV2 . (5.6)



5.1 Basic Selection Criteria 83

0

0.05

0.1

0.15

35 40 45 50 55 60 65 70

Σ(E−pz)  / GeV

1/
N

 d
n 

/ d
Σ(

E
−p

z)
 / 

(G
eV

-1
)

H1 data
LEPTO
ARIADNE

incl. DIS sample

cut value

0

0.05

0.1

0.15

35 40 45 50 55 60 65 70

Σ(E−pz)  / GeV

1/
N

 d
n 

/ d
Σ(

E
−p

z)
 / 

(G
eV

-1
)

H1 data
LEPTO
ARIADNE

dijet sample
incl. k⊥ algo

cut value

Figure 5.4: The distribution of
∑

(E − pz) of the final state (including the positron) in the

inclusive DIS sample (left) and in the dijet sample (right).

After all selection cuts are applied the event sample contains 30 617 deep-inelastic scattering

events. The subsequent jet analyses are based on this event sample.
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In this analysis we measure the jet cross sections of four different processes: The inclusive

jet cross section, the dijet, the three-jet and the four-jet cross section. Four different jet

clustering algorithms are used. For the reasons discussed in chapter 3 the central analysis is

performed with the inclusive k⊥ jet algorithm. Therefore most of the studies presented here

are shown for this choice (except in cases where the conclusions are different for the other

jet algorithms).

As discussed in section 2.1 the clustering of the particles to jets is performed in the Breit

frame which is defined by 2xBj
p + 
q = 
0. The event is rotated in the x-y plane of the Breit

frame such that the scattered positron points in the positive x-direction (i.e. φe,Breit = 0◦).
To reconstruct the boost vector we need the kinematic variables xBj and Q

2, as well as the

direction of 
q. The latter is obtained from the azimuthal angle φe of the scattered positron in

the laboratory frame and the variables xBj and Q
2 are reconstructed by the Electron-Sigma

Method. In appendix A we show that using this reconstruction method the boost vector is

less affected by radiative QED corrections than with the Electron Method.

Table 5.1 gives an overview on the parameters that define the jet phase space (described

in more detail in section 2.4). These are specific for the single jet algorithms introduced in

section 2.2. For all jet algorithms we apply the same cut on the pseudorapidity region in the

laboratory frame within which jets are accepted. For this purpose the four-vectors of the

jets are boosted from the Breit frame back to the laboratory frame where we demand

−1 < ηjet, lab < 2.5 (5.7)



84 Data Selection

inclusive jet cross section incl. dijet cross section
incl. k⊥ algorithm 10 432 jets (in 7 263 events) 2 855 dijet events
Aachen algorithm 10 097 jets (in 7 065 events) 2 715 dijet events
excl. k⊥ algorithm — 2 771 dijet events
Cambridge algorithm — 2 138 dijet events

incl. three-jet cross section incl. k⊥ algorithm 666 three-jet events
incl. four-jet cross section incl. k⊥ algorithm 84 four-jet events

Table 5.2: Statistics of the jet selection

for all jets. In addition to the cuts on the jets phase space listed in table 5.1 (which are

applied in the Breit frame), we also require a minimum jet energy measured in the detector

of

Ejet, lab > 4GeV (5.8)

for experimental reasons. This cut affects only a few jets at high Q2 (see Fig. 5.5) where (due

to the larger transverse boost) the jet energies in the laboratory frame and in the Breit frame

can be very different. According to the classification made above this cut is a “technical”cut

which is corrected for.

For the inclusive jet cross section we count all jets in the event sample which pass the

selection cuts. A single event may therefore give multiple contributions to the distributions.

The dijet event sample consists of all events which have at least two jets that pass the

selection cuts. For the three-jet (four-jet) event sample we require correspondingly events

with at least three (four) accepted jets (we are measuring inclusive multi-jet cross sections).

The number of events finally obtained for the individual data samples (when all selection

cuts are applied) are listed in table 5.2. In the inclusive jet sample many events contribute

with more than one jet. 60.5% of the events in the sample for the inclusive k⊥ algorithm

have only a single jet, 35.6% have two jets, 3.5% have three jets and 0.4% have four jets (i.e.

jets of ET > 7GeV within the angular acceptance region).

1�� ��� �
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In the following sections we show distributions of the selected jet events. We give an overview

of the basic properties of the jet samples and study how well the simulated events describe

the data. In this section we investigate the inclusive jet sample. The dijet and the three-jet

samples are discussed in the next sections.

3#"#$ ������� ��� ��
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The detector response to a hadronic jet is related to the primary observables: Energy and

angle (or rather pseudorapidity) of the jet in the laboratory frame. Distributions of both
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Figure 5.5: Angular and energy distributions of the inclusive jet sample in the laboratory

frame, measured with the inclusive k⊥ algorithm.

quantities are shown in Fig. 5.5 for the inclusive jet sample. The pseudorapidity distribution

(left) is shown in different regions of the transverse jet energy in the Breit frame ET . The

ET regions correspond to the bins in which the cross section is measured. Towards higher

ET the pseudorapidity distribution is slightly shifted to the forward direction. In all ET

regions the bulk of the data are in the central part of the angular acceptance region and the

cuts on the pseudorapidity only affect the tails of the distribution. The measured energy

distribution of the jets (right) is shown in different regions of Q2. At large Q2 we observe

a spectrum of higher jet energies. ARIADNE is very close to the data at smaller Q2, but

shows deviations at high Q2. The simulated events give a good description of the shape of

the pseudorapidity distribution, also outside the analysis range.

The distributions of the jet pseudorapidities and the transverse jet energies in the Breit

frame (where the jets are recombined) are shown in Fig. 5.6. We observe a shift in the jet

pseudorapidity spectrum in the Breit frame (left) in the proton direction at larger ET . The

transverse jet energies (right) are shown in different Q2 regions for the final ET bins and
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Figure 5.6: Angular and transverse energy distributions of the inclusive jet sample in the

Breit frame, measured with the inclusive k⊥ algorithm.

an additional bin extending down to ET = 5GeV. Both distributions are reasonably well

described by the simulation.
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Two observables, related to the internal structure of jets, have been defined in section 2.4.2

and are studied here for the inclusive jet sample. The jet shape ψ(r), which is the fractional

transverse jet energy inside a cone of radius r around the jet axis, is shown as a function

of r in Fig. 5.7 (top) in different regions of ET . The curvature of ψ(r) as a function of r is

strongly dependent on ET . At fixed r the value of ψ(r) increases with rising ET , i.e. the jets

become more collimated.

The average number of subjets 〈Nsubjet(ycut)〉 within a jet is shown in Fig. 5.7 (bottom)

as a function of the subjet resolution parameter ycut. The value of ycut specifies at which

relative squared transverse momentum structures within a jet are resolved. Within a given
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Figure 5.7: Jet shapes (top) and subjet multiplicities (bottom), measured with the inclusive

k⊥ algorithm in different ET regions in the Breit frame.
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ET range the subjet multiplicity increases towards smaller ycut. For a fixed value of ycut
we observe a decrease of 〈Nsubjet(ycut)〉 towards larger ET , indicating more collimated jets.

Although the subjet multiplicities are sensitive to a different aspect of the jet broadening

than the jet shapes, the findings are the same for both.

While the basic ET dependence is reproduced by both models, LEPTO and ARIADNE,

the latter shows a too fast decrease of the jet width with ET , leading to a worse description

of the high ET data. LEPTO gives a good description of the data over the whole ET range.

1�� ��� ��3�� ������

In this section we study properties of dijet events. Starting from kinematic variables, jet

angles and energies, we put the main focus on distributions that characterize the dijet system

itself or its properties relative to the total hadronic final state.
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The differential cross section in dependence of y and Q2 is shown in Fig. 5.8 for the dijet

samples of both k⊥ algorithms. For comparison the y distribution is also shown for the

inclusive DIS sample. Within the range 0.2 < y < 0.6 used in the analysis we see a similar

shape for both jet algorithms which is also similar to the shape of the inclusive DIS sample.

Only at values of y < 0.25 the behavior is different. While the spectrum for the exclusive

algorithm keeps rising towards small y as does the inclusive DIS cross section, the y distri-

bution for the inclusive algorithm decreases again. This effect is connected to the different

selection criteria of both jet definitions and is modeled by the simulation.

The distributions on the right side show the dijet cross sections as a function of Q2. We

observe a decrease of nearly four orders of magnitude over the range 150 < Q2 < 15 000GeV2.

Neither model can describe this shape. LEPTO shows a smaller Q2 dependence and describes

the absolute cross section only at high Q2, ARIADNE gives a better description of the lower

Q2 range, but falls off too fast towards higher Q2. The data lie always between both models.

In Fig. 5.8 we have compared the absolute model predictions of the cross sections to the

data. In the following we will only compare distributions normalized to the number of events

which enter the distribution, such that we can test whether the simulated events are able to

describe the shapes.
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In Fig. 5.9 the pseudorapidity distributions of the jets are shown in the laboratory frame

(top) and in the Breit frame (bottom) for the backward (left) and for the forward jet (right).

As in the case of the inclusive jet distributions, the dijet pseudorapidity distributions in

the laboratory frame have already fallen off where the angular acceptance cuts are applied.
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Figure 5.8: Distributions of the kinematic variables y and Q2 in the dijet sample for both

k⊥ ordered jet algorithms. The y distribution is also shown for the inclusive DIS sample.

The simulations describe both distributions reasonably well. The same is true for the dis-

tributions in the Breit frame. Here we see that most of the jets are produced at positive

pseudorapidities, i.e. in the so-called “target hemisphere” of the Breit frame.

The energy distributions of the jets as measured in the laboratory frame are shown

separately for the jet of lowest (highest) energy in the left (right) plot in the top of Fig. 5.10.

The less energetic jet has typically an energy of more than 10GeV, the higher energetic jet

more than 20GeV.

The lower part of Fig. 5.10 displays the transverse energy spectrum of the lower ET

jet in the Breit frame (left) and the invariant dijet mass distribution (right). It is seen

that the transverse jet energy cut ET > 5GeV has only a small effect after the hard cut

ET,1+ET,2 > 17GeV is applied. The dijet mass spectrum covers a range 15 �Mjj � 100GeV

and is well described by LEPTO and ARIADNE. The same holds for the other distributions.

Only at lower jet energies in the laboratory frame a small deviation between the data and
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Figure 5.9: Angular jet distributions in the dijet event sample for the inclusive k⊥ algorithm.

Shown are the jet pseudorapidities in the laboratory frame (top) and in the Breit frame

(bottom) for the backward (left) and the forward jet (right).

the simulation is seen.
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While inclusive jet production is fully described by the angles and the transverse jet energies,

dijet production is characterized by additional variables, connected to the properties of the

dijet system. In the leading order picture the variable ξ (as introduced in section 2.4) repre-

sents the proton momentum fraction carried by the struck parton. To obtain an optimized

reconstruction of ξ we rewrite the formula as

ξ ≡ xBj (1 +
M2

jj

Q2
) = xBj +

M2
jj

y s
. (5.9)

We use the right hand expression to reconstruct ξ and take xBj as usual from the Electron-

Sigma Method. For the reconstruction of the variable y we use the HadronMethod. Although
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Figure 5.10: Distributions of jet energies in the dijet sample for the inclusive k⊥ algorithm.

Shown are the jet energies in the laboratory frame (top), the transverse energy of the lower

ET jet in the Breit frame (bottom, left) and the invariant dijet mass spectrum (bottom,

right).

the variable yhad itself is less well reconstructed, the mismeasurement in yhad cancels partially

with those in the hadronic energies from which the invariant dijet mass is derived. The

variables ξ and xp (see section 2.4) are then reconstructed according to

ξreco = xeΣ +
M2

jj

yhad s
, xp =

xeΣ
ξreco

. (5.10)

The distributions of both variables are shown in the top row of Fig. 5.11. The ξ range covers

parton momentum fractions between 10−2 � ξ � 3·10−1. The ξ distribution is well described

by LEPTO and ARIADNE but both models show some discrepancies in the distribution of

xp. While LEPTO’s spectrum is slightly shifted towards larger xp, ARIADNE is shifted to

smaller values. The data curve lies between both model predictions.

The bottom row of Fig. 5.11 shows the distributions of η′ and ηBoost. According to the

definitions in section 2.4 these variables are reconstructed from the difference and the sum of



92 Data Selection

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-2 -1.5 -1 -0.5

log10(ξ)

1/
N

  d
n 

/ d
 lo

g 10
(ξ

)

H1 data
LEPTO
ARIADNE

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

xp

1/
N

  d
n 

/ d
x p

H1 data
LEPTO
ARIADNE

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5

η’ ≡ 1/2 | η1,Breit - η2,Breit |

1/
N

  d
n 

/ d
η’ H1 data

LEPTO
ARIADNE

dijet sample
incl. k⊥ algo.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

-1 0 1 2 3

ηBoost ≡ 1/2 ( η1,Breit + η2,Breit )

1/
N

  d
n 

/ d
η B

oo
st

H1 data
LEPTO
ARIADNE

Figure 5.11: Distributions of the dijet variables ξ, xp, η
′ and ηBoost for the inclusive k⊥

algorithm.

the jet pseudorapidities in the Breit frame. They characterize respectively the jet pseudora-

pidity in the dijet center-of-mass frame (η′) and the pseudorapidity difference corresponding

to the longitudinal boost from the dijet center-of-mass frame to the Breit frame (ηBoost).

The distribution of the jet pseudorapidities in the dijet center-of-mass frame η′ is limited

to values η′ � 1.8 (an effect of the hard transverse jet energy cuts). The distribution of

ηBoost is approximately symmetrically distributed around a center value of 〈ηBoost〉 � 0.7, i.e.

the Breit frame is on average shifted by Δη = 0.7 relative to the dijet center-of-mass frame.

Both distributions are reasonably well described by the simulated events.

In the leading order picture, pairs of jets are produced back-to-back in the x-y plane

of the Breit frame (Δφjet, jet = 180◦) and with equal transverse energies (ΔET = 0). This

picture is modified when higher order corrections are considered.

Further changes may be introduced by errors in the measurement leading e.g. to an

increase of the ET imbalance. In the top row of Fig. 5.12 distributions of both ΔET (left)

and Δφ (right) are shown. The difference in the transverse jet energies is normalized to the

transverse jet energy of the highest ET jet.
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Figure 5.12: Distributions of the imbalance of the transverse jet energies, the difference in

the jet azimuthal angles and the azimuthal angle between the jets and the scattered positron

in the Breit frame.

The normalized transverse jet energy imbalance is on average 0.25 and is well described

by both Monte Carlo simulations. The difference in the azimuthal jet angles shows a peak

at Δφ = 180◦ and a strong decrease towards smaller values. The simulated events give

only a poor description of this distribution. They overestimate the peak and, consequently,

underestimate the tail.

A further quantity that we study here is the azimuthal angle between the scattered

positron and the jets in the Breit frame (both jets in the event enter this distribution).

Although the leading order matrix elements predict a certain modulation of this distribution,

the observed variation is more connected to the restricted jet pseudorapidity acceptance in

the laboratory frame [95]. The modulation is well described by both Monte Carlo simulations.

Dijet production in deep-inelastic scattering involves multiple hard scales. On one hand

there are scales that characterize the two-jet final state, as the average transverse energy of

the two jets ET in the Breit frame or the invariant mass of the dijet systemMjj . On the other

hand there is the virtuality of the exchanged photon Q2. In Fig. 5.13 we show distributions
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Figure 5.13: Ratios of process relevant hard scales in dijet production.

of the ratios of these scales. Both distributions are well described by the simulated events.
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Our last investigations on the dijet event samples concern dimensionless variables that relate

the jet energies to the total energy of the hadronic final state.

The variable xγ measures the fractional longitudinal energy in the backward direction

contained in the jets. It is defined as the ratio of the (E−pz)dijets carried by the dijet system

and the
∑

(E − pz)had carried by the total hadronic final state1

xγ ≡ (E − pz)dijets∑
(E − pz)had

. (5.11)

The xγ distribution is shown for both k⊥ algorithms in Fig. 5.14. One sees clearly the

differences arising from the inclusive and the exclusive clustering procedures. The exclusive

k⊥ algorithm assigns each particle in the event either to one of the hard jets or to the

proton remnant. Particles in the backward region are usually closer to the hard jets and are

therefore mostly included in the multi-jet system. Hence they give no contribution to the

backward energy flow outside the jets and the xγ distribution for the exclusive k⊥ algorithm

is sharply peaked at xγ = 1 (Fig. 5.14, right).

In the inclusive jet definitions particles may be preclustered to “protojets” which are

later not clustered to the two highest ET jets. These particles (and especially those in the

backward region) produce a tail in the measured xγ distribution, as seen in Fig. 5.14 (left).

The xγ distribution for the inclusive k⊥ algorithm is peaked at xγ � 0.9 and has a much

larger tail towards smaller xγ.

1In photoproduction events (at Q2 � 0GeV2) the variable xγ is sensitive to the energy of the photon

remnant and can therefore be directly related to the energy fraction of the quasi real photon that enters the

hard process.
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Figure 5.14: Distribution of the variable xγ which is defined as the fractional
∑

(E − pz)

of the hadronic final state carried by the dijet system.

Two further variables h1 and h2 are defined as the fraction of the total transverse energy

in the Breit frame carried by respectively the leading jet or the dijet system. They are

defined as

h1 ≡ ET,1∑
ET,Breit

and h2 ≡ ET,1 + ET,2∑
ET,Breit

. (5.12)

In Fig. 5.15 the differential distributions of h1 (top) and h2 (middle) are presented for the

inclusive (left) and for the exclusive k⊥ algorithm (right). For both algorithms similar

distributions are observed. The highest ET jet contains on average 42% of the transverse

energy in the Breit frame, while the dijet system contains on average more than 70%.

The average values 〈h1〉 and 〈h2〉 are displayed as a function of the total hadronic final

state energy in the range of 15 <
∑
ET,Breit < 100GeV in Fig. 5.15 (bottom). For both

algorithms only small dependences are seen2.

The simulated events from both generators are able to describe qualitatively the fea-

tures of all distributions, including the dependence of the xγ spectrum on the jet definition.

LEPTO gives a good quantitative description of the amount of energy outside the jets. ARI-

ADNE predicts slightly more energy outside the jets, in the backward region (showing as a

shift in the xγ spectrum) and also for the transverse component (showing as a shift in the

h1,2 spectra).

2The increased averages at small
∑

ET,Breit for the inclusive k⊥ algorithm are only a phase space effect.

The requirement ET,1 + ET,2 > 17GeV restricts e.g. h1 to a value of one if
∑

ET,Breit � 17GeV.
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Figure 5.15: Distributions of the fractional transverse energy of the hadronic final state in

the Breit frame carried by the jets, for the inclusive (left) and for the exclusive k⊥ algorithm

(right). Shown is the fractional contribution of the first jet h1 (top) and the fractional

contribution of both jets h2 (middle). The bottom plots show the average values of h1 and

h2 as a function of the total transverse energy of the hadronic final state in the Breit frame.
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Figure 5.16: Distributions of three-jet events. Shown are the three-jet cross sections (top)

as a function of the invariant three-jet mass M3j (left) and the transverse energy of the third

jet ET,3 in the Breit frame (right). The bottom plots show the normalized pseudorapidity

spectra of the most backward (left) and the most forward jet (right) in the laboratory frame.
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Finally we take a brief look at distributions of three-jet events. A detailed analysis of

three- and four-jet production has been performed in collaboration with A. Heister and is

documented in his Diploma thesis [96]. Here we will only show selected distributions.

In the upper plots of Fig. 5.16 the three-jet cross section is shown as a function of the

invariant mass of the three-jet system M3j (left) and of the transverse energy of the third jet

ET,3 in the Breit frame (right). The simulated events give a good description of the shapes of

these distributions, but they fail to describe the absolute production rate by approximately

20%. Since the LEPTO prediction for the dijet cross section is also slightly below the

data (Fig. 5.8) the fractional contribution of three-jet events to the dijet sample is still well

described (Fig. 3.13 in [96]).

The normalized pseudorapidity spectra of the most backward (forward) jet in the labora-
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tory frame are shown in the left (right) plot in the bottom of Fig. 5.16. These distributions

are also well described by the simulated events.

Both models LEPTO and ARIADNE only include the QCD matrix elements of O(αs).

The production of a third jet originates therefore only in the parton cascade (i.e. the parton

shower in LEPTO and the dipole cascade in ARIADNE). Since these parton cascades are

based on soft and collinear approximations it is an interesting observation that both give

such a good description of the three-jet cross section, even at large three-jet masses and high

transverse energies of the third jet.
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The experimental uncertainties in the measurement of the positron energy and the scatter-

ing angle have been determined for the measurement of the inclusive neutral current cross

section [32]. Details on the procedure can be found in [81]. While these results can directly

be applied in the present analysis, this is not the case for the hadronic energy calibration.

In this section we estimate this uncertainty.

The calibration of the hadronic energy scale has been performed by comparing the trans-

verse momentum of the precisely calibrated positron to that of the hadronic system in the

inclusive neutral current event sample [81]. Calibration constants have been determined for

each electromagnetic and hadronic wheel using the ratio of the transverse momenta of the

hadronic system and the scattered positron. The final calibration is obtained by applying

an additional overall correction factor depending on the transverse momentum pT, had of the

hadronic final state and the angle γ (as defined in (4.5)). Using this calibration procedure,

the uncertainty in the hadronic energy measurement is quoted to be 2% [32]. This value is

obtained from the quadratic sum of an uncorrelated uncertainty of 1.7% and a correlated

uncertainty of 1%, originating from the calibration method and from the uncertainty of the

reference scale, given by the positron energy.

For the present jet analyses we apply the same (wheel dependent) correction as in the

inclusive analysis. The pT, had dependent correction is not applied, since in a multi-jet sample

the angle γ does not represent the direction of the actual energy flow in the detector and

in addition the total transverse momentum can be very different from the local transverse

momenta of the single jets.

We study here the quality of the calibration (without the pT, had dependent part) to esti-

mate the uncertainty induced in the present analysis. For this purpose we use the kinematics

of the scattered positron for comparisons to the hadronic final state properties. In Fig. 5.17

we compare the transverse momenta pT (top) and the variable y (bottom), as reconstructed

respectively from the hadronic final state and from the positron, for the inclusive event sam-

ple (left) and for the dijet sample (right). The distributions of both ratios are peaked closely

to the value of one, and the simulations give a good description of all distributions.

To look into further detail, we study these ratios for the dijet sample as a function
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Figure 5.17: The distributions of the pT -balance (top) and the y-balance (bottom) between

the positron and the hadronic final state for the inclusive event sample (left) and for the dijet

event sample (right) as measured using the inclusive k⊥ algorithm.

of the angle of the hadronic energy in the detector. For the inclusive event sample such

comparisons are usually performed as a function of the angle γ which indicates the direction

of the hadronic energy flow in the calorimeter. In a multi-jet sample, however, the angle

γ has no direct interpretation. The standard procedure is here adapted to the multi-jet

analysis, by using a subsample of the dijet events in which both jets lie approximately in the

same pseudorapidity region in the detector (namely within Δηdijet, lab < 1). In this subsample

the average pseudorapidity ηdijet, lab of both jets is a good representation of the direction of

the energy flow in the event.

In Fig. 5.18 (left) we show the average values of the pT -balance (top) and the y-balance

(bottom) as a function of ηdijet, lab. Both average values are always in the range of +5%

and −4% and decreasing slightly with ηdijet, lab. To make the relative deviation between the

simulation and data visible we have displayed the corresponding ratios of data over Monte

Carlo simulation on the right side. The agreement is better than 2% over the whole range.

The leftmost and the rightmost bins have limited significance due to their large statistical
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Figure 5.18: Hadronic final state calibration studies for a subset of the dijet sample where

Δηjet,lab < 1. Shown is the pT -balance (top) and the y-balance (bottom) as a function of the

average pseudorapidity of the dijet system (left) and the ratio of the data and the simulation

(right).

errors (the amount of events with two very forward or backward jets is small). In some cases

these ratios are, however, close to the value of 2%, such that a quoted value of 2% might

underestimate the true uncertainty. We therefore decide to quote a larger uncertainty of 4%

of which 2% are considered as correlated and 3.4% as uncorrelated (such that the quadratic

sum is equal to 4%). This should be a conservative estimate of the uncertainty of the present

hadronic energy calibration.
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Background from photoproduction events (where the scattered positron is not detected in

the detector) may contribute to the measured jet event samples when a hadronic final state

particle is misidentified as a positron candidate and further hadronic activity passes the jet

selection criteria. The size of this background has been estimated using events simulated by

the event generator PYTHIA corresponding to an integrated luminosity of Lint � 100 pb−1.
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The estimated contribution of photoproduction events to the dijet cross section is below one

per mil for all jet algorithms. The contribution to the inclusive jet cross section is 2.5 per

mil. The largest contribution in a single bin is never above 5 per mil. Due to the very small

contributions these values fluctuate strongly between different bins, such that a statistical

subtraction is neither meaningful nor statistically justified. We therefore decide to neglect

this small effect.
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To unfold the data by applying bin-by-bin correction factors which are determined from

simulated event samples (as described in section 4.4) two conditions have to be fulfilled: The

simulation has to give a reasonable description of properties of the data sample and the bin

widths have to be chosen such that migrations between bins are sufficiently small.

In the previous chapter we have shown that the simulated events are able to describe most

details of the hadronic final state, including the properties of single jets and the multi-jet

system. The simulation can therefore be used in the unfolding procedure of the data.

In this chapter we use the simulation to study the resolution of the observables and to

choose the bin widths such that migrations between different bins are small, i.e. that the

bin purities and efficiencies are sufficiently large. We determine the correction functions for

detector effects and the QED corrections. The different sources of experimental uncertainties

are studied to determine the corresponding uncertainties in the cross section measurement.

Finally we redo the analysis, using the Electron Method for the kinematic reconstruction to

test the stability of the results.
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The following criteria have been used to chose the bins in which the cross sections are

measured (the quoted numbers are given for the dijet sample of the inclusive k⊥ algorithm,

which consists of 2855 events).

❍ We require that bin purities and efficiencies are typically above 50%. Bin purities and

efficiencies are defined as the number of events that enter the same bin of a distribution

on generator and on reconstructed level, divided by the number of all events that are

reconstructed, respectively generated in this bin1. For the determination of these we

have to consider migrations between bins as well as migrations in and out of the event

(or jet) sample.

1In the inclusive jet sample this definition does not apply to events, but to single jets.
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Figure 6.1: The resolution of the jet pseudorapidity in the laboratory frame (left) and in

the Breit frame (right) for the inclusive jet sample obtained using the inclusive k⊥ algorithm.

❍ If allowed by the resolution, the bins of the distributions should have approximately

the same statistics, with a typical number of events per bin of approximately 150. This

leads to a statistical error of about 8% which is smaller than the expected systematic

uncertainties and allows to have approximately 19 bins for each observable.

❍ The data are divided into four regions of Q2, such that each region contains approxi-

mately 700 events. Differential distributions can therefore have five bins if no further

restrictions apply, e.g. from limited resolution.

❍ In the case of steeply falling distributions (e.g. the ET spectrum) where the resolution

does not allow to have equal statistics in all bins, we choose the bins such that no bin

has less than 20 events (corresponding to a statistical error of 22%).

All resolution studies are shown here for the inclusive k⊥ algorithm which is our choice for

the central results of the analysis. The most important observables in the QCD analysis

are the differential inclusive jet cross section w.r.t. ET and the differential dijet cross section

w.r.t. ξ. For these two observables we will present a detailed migration study.

The resolutions of the observables are always shown in bins of the reconstructed value.

To guide the eye we have overlaid fits of a Gaussian in the central region of the distributions

(the fit parameters are displayed in the plots). The bin boundaries finally chosen are listed

together with the results in the appendix D.1.

=#$#$ �	
 &�!�����
 +
� ��
��


The inclusive jet cross section is measured as a function of the transverse jet energy in

different Q2 regions. The limiting factor in the choice of the binning is the ET resolution. To
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determine the ET resolution a matching criterion must be introduced, according to which a

reconstructed jet is identified with a generated jet (e. g. based on the spatial distance). If no

generated jet can be matched with a reconstructed jet, the reconstructed jet is considered as

“background” and the purity of the jet sample is reduced. In the case that no reconstructed

jet is matched with a generated jet, this reduces the efficiency of the jet finding.

The matching criterion that we use is based on the distance ΔR in the plane of pseudo-

rapidity and azimuthal angle between the axis of a generated and a reconstructed jet. To

match two (generated and reconstructed) jets we require that the reconstructed jet axis lies

within a cone of ΔR = 0.6 around the axis of a generated jet in the detector2. The chosen

value of ΔR is, of course, arbitrary. We can see, however, in Fig. 6.1 (left) that the resolution

of the pseudorapidity measurement in the detector is very good (better than Δη = 0.05).

Therefore all further conclusions do not change e.g. if we vary ΔR by ±0.3.

The resolution of the jet pseudorapidity in the Breit frame is shown in Fig. 6.1 (right). We

notice that the resolution in the Breit frame is worse than in the laboratory frame (ΔηBreit �
0.09), due to the event-wise uncertainty in the reconstruction of the boost vector. However,

as in the laboratory frame, the difference between the generated and the reconstructed value

is peaked close to zero. Hence, on average, the boost does not introduce any bias, which

would be seen as a shift in the distribution.

In Fig. 6.2 (top) we display the ratio of the reconstructed and the generated transverse

jet energy ET in different regions of ET . It is seen that in all cases the curves are peaked

within ±2% around one, with a resolution that improves from 18% to 8% from lower to

higher ET . The simulations by LEPTO and ARIADNE predict the same behavior. We have

also investigated the Q2 dependence of the resolution, integrating over ET (not shown here).

The resolution is always 16% and no Q2 dependence is seen.

The lower plot in Fig. 6.2 gives the complete information on the migrations in the inclusive

jet sample. The axis labels 1–4 correspond to the four different ET bins in each Q2 range.

Bin number 0 contains those reconstructed (generated) jets which are not matched with a

generated (reconstructed) jet. If an event does not pass the kinematic cuts on one level (or

the technical cuts on reconstructed level) it falls in bin No. −1. Based on this information all

purities and efficiencies can be calculated3. For the bin sizes chosen here we obtain purities

between 52% and 77% and efficiencies of 49%–64% (improving towards higher ET ). These

values are sufficiently high to apply the bin-by-bin correction procedure. The off-diagonal

elements in the migration plot (Fig. 6.2, bottom) are small enough to consider the single

bins as uncorrelated.

2The matching of jets is done in the laboratory frame, such that uncertainties in the boost to the Breit

frame do not affect the matching. Whenever these uncertainties affect the ET or the ηjet,Breit reconstruction

this can be seen in the corresponding resolution plots.
3The event loss due to cuts (5.3) and (5.4) is not included in the migration tables and in the quoted

efficiencies. Since these cuts only affect a well defined fraction of the event sample and the remaining events

are correspondingly reweighted, their effect is not regarded as an inefficiency.



106 Unfolding the Data

0

2

4

Constant   2.037
Mean  0.9906
Sigma  0.1746

1/
N

 d
n 

/ d
 (

E
T

,r
ec

 / 
E

T
,g

en
)

Constant   2.363
Mean   1.016
Sigma  0.1526

0

2

4

0.5 1 1.5

Constant   2.964

Mean   1.013
Sigma  0.1207

0.5 1 1.5

Constant   4.363

Mean   1.022
Sigma  0.7834E-01

(ET,rec / ET,gen)

LEPTO
ARIADNE

7 < ET < 11 GeV 11 < ET < 18 GeV

18 < ET < 30 GeV 30 < ET < 50 GeV

incl. jet sample
ET resolution

-1

0

1

2

3

4

➊re
co

ns
tr

uc
te

d 
bi

n 
N

o.

➋

-1

0

1

2

3

4

-1 0 1 2 3 4

➌

-1 0 1 2 3 4

➍

generated bin No.

1-4 :  ET,jet bin Number

 0    :  jet not found
(or ET,jet < 7 GeV)

-1    :  event not accepted
within DIS cuts

Q2 range:

➊:  150 ...   200 GeV2

➋:  200 ...   300 GeV2

➌:  300 ...   600 GeV2

➍:  600 ... 5000 GeV2

incl. jet sample
ET,jet migrations

(LEPTO)

Figure 6.2: Resolution and migration studies for the inclusive jet cross section using the

inclusive k⊥ algorithm. Shown is the ET resolution in different bins of the reconstructed ET

(top) and the migrations between different ET bins in the four Q2 regions (bottom).
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Figure 6.3: The resolution of the average transverse energy ET , the invariant mass Mjj,

the variable η′ of the dijet system and the Bjorken scaling scaling variable xBj in the dijet

event sample for the inclusive k⊥ algorithm.
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The dijet cross sections are measured as functions of various variables. Most distributions

are presented in different regions of Q2 (only the η′ dependence is, in addition, also measured

in different ET regions). The resolution of most variables is independent of Q2, as in the

cases of the average transverse energy of the dijet system ET , the invariant dijet mass Mjj,

the pseudorapidity difference η′ and the Bjorken scaling variable xBj. For these variables

the resolution is shown in Fig. 6.3, integrated over the total Q2 range. The resolution is

defined as the ratio of the respective variables using all events which are classified as dijet

events on generator level, as well as on detector level. The only exception is the variable η′ for
which the resolution is defined as the difference of the reconstructed and the generated value.

The resolution of η′ is Δη′ � 0.05, while the other variables have a resolution of � 11.5%

(independently of Q2). All distributions are nicely peaked at one or zero, respectively.
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Figure 6.4: The resolution of the partonic scaling variable xp in the dijet event sample for

the inclusive k⊥ algorithm in four regions of Q2.

A Q2 dependence is observed in the resolution of the variables xp and ξ, as displayed in

Figs. 6.4 and 6.5 (top). The resolution for both variables improves from 15% at lower Q2 to

9% at the highest Q2. Both variables are on average reconstructed with an accuracy better

than 1% in most Q2 regions.

The migrations between the final ξ bins is shown in the bottom of Fig. 6.5. The presen-

tation is identical to the one for the inclusive jet cross section: The ξ bins in the analysis are

labeled by numbers 1–5 (the highest Q2 range has only 4 ξ bins). Bin No. 0 contains events

which were (either on detector level or on generator level) not classified as dijet events while

events that were not selected as DIS events are counted in bin No. −1.

For the chosen binning we obtain bin purities between 50% and 86%, except for bin No. 1

in the lowest Q2 range where the purity is 41%. The efficiencies are slightly smaller (in the

range of 44% and 73%). The migrations in the distributions of the other observables (not

shown here) have also been investigated. All bin widths have been chosen such that the bin

purities and efficiencies are in the same range as those shown here.

As for the inclusive jet cross section, we therefore conclude that the bin widths are chosen

appropriately to unfold the data using the bin-by-bin correction procedure and to neglect

correlations between different bins in the final QCD analysis.
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Figure 6.5: Resolution and migration studies for the dijet cross section using the inclusive

k⊥ algorithm. Shown is the resolution of the variable ξ in different regions of Q2 (top) and

the migrations between different ξ bins in the four Q2 regions (bottom).
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Figure 6.6: The dependence of the correction function on the jet pseudorapidity in the

laboratory frame, for the inclusive jet cross section (left) in different Q2 ranges, and for the

dijet cross section (right) separately for the forward (top) and backward jet (bottom) in the

laboratory frame.
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The distributions of all observables will be corrected for effects of limited detector resolution

and acceptance, as well as for inefficiencies of the selection. Furthermore we correct for higher

order QED processes (but not for the running of the electromagnetic coupling constant). All

results represent therefore the values of the corresponding observables at the level of “stable”

hadrons (hadrons with a lifetime above 3 · 10−10 sec), if higher order QED corrections are

excluded.

In the previous chapter we have shown that the simulated events from both LEPTO and

ARIADNE give a reasonable description of many properties of the selected data samples.

Although not both of them could describe all distributions, in most cases at least one of them

was able to describe the basic features. On this basis we decide to use these event simulations

to determine the correction functions for our cross section measurements. From the remarks

made above, it is clear that there is no reason to prefer one or the other simulation. It is

indeed helpful to see whether the small differences in the distributions lead to a difference

in the estimated correction functions.



6.2 Correction Functions 111

correction factor: mean value LEPTO ARIADNE

0.5

1

1.5

150 < Q2 < 200 GeV2

de
te

ct
or

 &
 Q

E
D

 c
or

re
ct

io
n

0.5

1

1.5

200 < Q2 < 300 GeV2

0.5

1

1.5

300 < Q2 < 600 GeV2

0.5

1

1.5

600 < Q2 < 5000 GeV2

incl. k⊥ algorithm

ET,jet  / GeV
7 10 20 30 50

0.5

1

1.5

150 < Q2 < 200 GeV2

de
te

ct
or

 &
 Q

E
D

 c
or

re
ct

io
n

0.5

1

1.5

200 < Q2 < 300 GeV2

0.5

1

1.5

300 < Q2 < 600 GeV2

0.5

1

1.5

600 < Q2 < 5000 GeV2

Aachen algorithm

ET,jet  / GeV
7 10 20 30 50

Figure 6.7: The correction functions for the ET dependence of the inclusive jet cross section,

for the inclusive k⊥ algorithm (left) and for the Aachen algorithm (right).

We have seen that in most cases where differences between both models are observed,

the data distribution is in between both model predictions. We therefore determine the

correction functions for our analysis from the mean value of both estimates, and consider

the difference between the mean value and the single values as the intrinsic uncertainty,

arising from the insufficient description of the data by (at least one of) the models.

In the following we show the combined correction functions, including the detector and the

QED corrections. For demonstration purposes we show in one case the single contributions

as well. We give a comprehensive overview on the correction functions for the most important

observables.
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Before we discuss the correction functions for the final observables, we look at the correction

as a function of the jet pseudorapidity η in the laboratory frame (Fig. 6.6). In the left

plot we show the correction for the inclusive jet sample in four different regions of Q2. The

correction functions vary within ±20% around one. Only in the lowest Q2 region the average

correction is +25%, due to cut (5.2) on the z-impact position of the positron, which requires

this acceptance correction.
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Figure 6.8: The correction functions for the ξ distribution of the dijet cross section for the

inclusive k⊥ algorithm, separated in the detector correction (left) and the QED correction

(right).

In all Q2 regions the correction functions show a slight η dependence. A very similar

behavior is seen in the correction functions of the dijet cross section, shown in Fig. 6.6 (right)

separately for the forward (top) and the backward jet (bottom), here integrated over Q2.

This pseudorapidity dependence is seen in both model estimates, which agree in all general

characteristics. ARIADNE predicts corrections slightly higher than LEPTO, especially in

the forward and in the backward region, where the differences can be as large as 20%. Since

the bulk of the jets are, however, in the central detector region (see Fig. 5.5), the differences

for integrated distributions are small.

The correction functions for the inclusive jet cross section are shown in Fig. 6.7 for the

inclusive k⊥ algorithm (left) and for the Aachen algorithm (right). For both jet algorithms

the correction functions are flat in ET , only in the highest ET bin an increase is seen. The

model dependence is in most cases below 10%.
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For the ξ distribution we show the single contributions to the total correction factor in

Fig. 6.8: The detector correction (left) and the QED correction (right). It is seen that the
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Figure 6.9: The correction functions for the ξ distribution of the dijet cross section for four

different jet algorithms.
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Figure 6.10: The correction functions for the ET distribution of the dijet cross section for

four different jet algorithms.
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Figure 6.11: The correction functions for the dijet cross section as a function of the invariant

dijet mass Mjj (left) and the variable η′ (right) using the inclusive k⊥ algorithm .

QED corrections are very small and flat in all Q2 regions, such that the size of the total

correction reflects mostly the size of the detector correction.

The total correction functions for the ξ distributions are given in Fig. 6.9 for all four

jet algorithms. Both exclusive jet algorithms (bottom) exhibit sightly larger corrections

compared to the inclusive algorithms (top). In Fig. 6.10 the correction functions for the ET

distributions are displayed (for the four jet algorithms) and Fig. 6.11 shows the correction

functions for the dijet mass distribution (left) and for the variable η′ (right), for the inclusive
k⊥ algorithm.

In all cases the correction functions show a reasonably small model dependence. The size

of the corrections is for the inclusive jet algorithms (inclusive k⊥ and Aachen algorithms)

typically below 20%, except at Q2 < 200GeV2, where we correct for the acceptance cut (5.2).

The observables obtained from the exclusive jet algorithms (exclusive k⊥ and Cambridge

algorithm) have slightly higher corrections, especially at lowest ξ and at lowest ET , but still

have a small model dependence.
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Various sources contribute to the uncertainties of the measured jet cross sections. In the

following we discuss which sources are correlated and which are uncorrelated between the

single data points and how the single contributions are evaluated.

6���������� +������������

Statistical uncertainties arise from the limited amount of events used in the determination of

a quantity. In this analysis they enter at three places: (i) the limited amount of data in the

reconstructed distributions, (ii) the limited number of simulated events, used to determine

the detector correction functions, (iii) the number of generated events, used to determine

the size of the QED corrections. All three contributions are added in quadrature for each

bin. Due to their statistical nature they are uncorrelated between different bins.

While the size of (i) is largest, (ii) gives further contributions, which are only slightly

smaller since the luminosity of the simulated events is a factor of three (five) larger for

LEPTO (ARIADNE) compared to the data. The statistical uncertainty from (iii) is always

negligible, compared to the (i) and (ii), due to the very large luminosities of the generated

event samples (see section 4.4.4).

+���������' �� ��� 7
�������' #������������

For the present data set the uncertainty in the luminosity determination is 1.5%. This

introduces a corresponding overall normalization uncertainty, which is correlated between

all data points.

����� #�%������� �� ��� -��������� �
�������

In section 6.2 we have described the correction procedure, in which the correction functions

are determined as the mean value of the estimates from LEPTO and ARIADNE. The un-

certainty, arising from the model dependence is taken to be the difference between the mean

value and the single model estimates (i.e. half the spread between both models).

Since we do not observe a general trend, we assume a fraction of 1/
√
2 of the spread

to be correlated and a further fraction of 1/
√
2 to be uncorrelated between the single data

points, such that the quadratic sum is equal to the total quoted uncertainty.

+������������ �� ��� &������� ��������
�����

In the present analysis we use the calibration of the positron energy which has been devel-

oped for the measurement of the inclusive neutral current cross section [32]. Details on the

procedure can be found in [81]. Here we only summarize the final results on the achieved

precision, which depend on the calorimeter wheel in which the impact point zimp of the

positron lies.
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The uncertainty of the positron energy is 1% in the backward part (zimp < −145 cm),

0.7% in the CB1 and CB2 wheels (−145 cm < zimp < 20 cm), 1.5% for 20 cm < zimp < 100 cm

and 3% in the forward part (zimp < 100 cm). These values are obtained by the quadratic

sum of uncorrelated uncertainties and a correlated uncertainty, which is 0.5% in the whole

LAr calorimeter.

The uncertainty in the positron track measurement is taken to be ±3mrad for the polar

and for the azimuthal angle (the latter enters through the reconstruction of the boost vector

to the Breit frame, as described in section 5.1.4). While the uncertainty in the polar angle

is considered to be correlated between the data points, we consider the uncertainty in the

azimuthal angle reconstruction as uncorrelated.

+������������ �� ��� �������� ����� 6���� ����
������

The uncertainties in the measurement of the hadronic final state comprise three different

contributions: The hadronic energy scale uncertainty of the LAr calorimeter, which is ±4%

for the present analysis (as described in section 5.5), and the uncertainties in the measure-

ment of the track momenta and in the hadronic energy scale of the SPACAL, which are

±3% and ±7%, respectively [32, 81]. As in [32, 81] we treat the uncertainties from the track

momenta and the SPACAL energy scale as uncorrelated between the data points. From the

4% uncertainty of the hadronic energy scale of the LAr calorimeter we consider 2% to be

correlated and the rest (when added in quadrature) of 3.4% as uncorrelated.

 $��
����� �� ��� 6��� �� ��� +������������

To determine the contributions from the different sources to the uncertainties of the measured

jet cross sections, we have varied all single sources by one standard deviation upwards and

downwards, and have redone the data selection. Since most of the variations are small, the

variations in the data sample are often caused by to purely statistical event fluctuations.

Therefore we have redone the selection procedure also for the LEPTO simulation which has

a higher statistics. The variations are consistent with those seen in the data. Due to the

higher statistics we quote the relative change of the LEPTO event sample as the relative

uncertainty of the measured cross sections.

The largest uncertainties come from the hadronic energy scale of the LAr calorimeter and

from the measurement of the track momenta. For these contributions we quote the observed

(and in general asymmetric) variations, when the corresponding sources are varied by one

standard deviation upwards and downwards. The contributions from all other sources are

relatively small such that statistical fluctuations may sometimes lead to an underestimation

of the true uncertainty. In order not to underestimate these uncertainties and to be conser-

vative, we quote a symmetric uncertainty of the size of the larger relative change when the

sources are varied by one standard deviation upwards or downwards.

The model dependence of the correction functions has been presented in all plots in the

previous section. In Figs. 6.12 and 6.13 we show the other contributions, connected to the
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Figure 6.12: The relative experimental uncertainties for the inclusive jet cross section

measured using the inclusive k⊥ algorithm as a function of the transverse jet energy in

different regions of Q2. Shown are the relative variations of the cross section w.r.t. to the

central result when the single sources are varied by one standard deviation.
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the central result when the single sources are varied by one standard deviation.
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Figure 6.14: The relative change in the corrected cross sections when using the Electron

Method instead of the Electron-Sigma Method, for the ET distribution of the inclusive jet

cross section (left) and the ξ distribution of the dijet cross section (right).

uncertainties in the calibration, for the ET dependence of the inclusive jet cross section and

the ξ dependence of the dijet cross section. A complete list of the total uncertainties of all

measured cross sections can be found in appendix D.1.

� #�9����� ��������
����� �� ��� :���������

We have performed a further consistency test by using the Electron Method instead of the

Electron-Sigma Method to reconstruct the event kinematics, and have redone the whole

analysis. The ratio of both results is displayed in Fig. 6.14. The error bars represent the

statistical uncertainties of the ratio, which are, however, overestimated since both data sam-

ples are highly correlated. For the ξ distribution (right) both results agree within less than

5%, which is compatible with both, the statistical uncertainties and the quoted model de-

pendence. The same is true for the ET distribution (left), with the exception of two of

the highest ET bins where the deviations are larger. In these bins, however, other uncer-

tainties are larger than the observed change: The model dependence of the correction, the

hadronic energy scale of the LAr calorimeter, and the statistical uncertainties. Therefore

we do not consider the changes as additional uncertainties, but as a different appearance of

uncertainties that we already account for.
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In this chapter we present the results of the measurements. All observables have been cor-

rected for detector effects and for QED corrections (but neither for the running of the elec-

tromagnetic coupling constant nor for the contributions from Z0 exchange). Furthermore we

have not applied any corrections for non-perturbative contributions (“hadronization correc-

tions”). In the presentation the statistical uncertainties are indicated by the inner error bars,

while the total error bar represents the quadratic sum of the statistical and all systematic

uncertainties.

The central results of the analysis are the inclusive jet and the dijet cross sections at large

momentum transfer Q2, for which the experimental analysis procedure has been described

in detail in the two previous chapters. These results will later be used in the QCD analysis.

Two further analyses have been performed in collaboration with Arno Heister and Lars

Sonnenschein and are documented in their respective Diploma theses [96, 97]. These analyses

have investigated the production rates of higher jet multiplicities (three- and four-jet cross

sections) and the internal structure of jets (jet shapes and subjet multiplicities). From these

analyses we will present here only some of the main results.

7�� ��� �
��
��$� !�� ��	�� �����	


The inclusive jet cross section is measured for two jet algorithms, the inclusive k⊥ algorithm

and the Aachen algorithm (as defined in section 2.2) in the Breit frame, in the phase space

given by

0.2 < y < 0.6 , 150 < Q2 < 5000GeV2 , ET,jet,Breit > 7GeV , −1 < ηjet, lab < 2.5 . (7.1)

The analysis is based on data taken in the years 1995–1997 by the H1 experiment, corre-

sponding to an integrated luminosity of Lint = 33 pb−1.

The results are presented in Fig. 7.1 double differentially as a function of the transverse

jet energy in the Breit frame ET in different regions of Q2 (the numerical values can be found

in appendix D.1).
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Figure 7.1: The inclusive jet cross section as a function of the transverse jet energy in

different regions of Q2 for the inclusive k⊥ algorithm (left) and for the Aachen algorithm

(right). The perturbative QCD prediction in NLO is compared to the measurement.

The data for the inclusive k⊥ algorithm (left) and for the Aachen algorithm (right) cover

a range of transverse jet energies squared (49 < E2
T < 2500GeV2) that is similar to the range

of the four-momentum transfers squared (150 < Q2 < 5000GeV2) of the event sample. The

cross sections for both jet algorithms are of the same size and show a slightly harder ET

spectrum towards larger Q2.

The inclusive jet cross sections measured are compared to the predictions of perturbative

QCD in next-to-leading order in the strong coupling constant1. This direct comparison

is meaningful since non-perturbative contributions are seen to be always below 10% (see

section 3.1). Over the whole range of Q2 and ET the perturbative calculation gives a good

description of the data.

7�� ��� ��3�� ��	�� �����	


The dijet cross section is measured for the four jet algorithms introduced in section 2.2: Two

inclusive jet algorithms (inclusive k⊥ and Aachen algorithm) and two exclusive jet algorithms

1The calculations are performed using the program DISENT [60] for the parton distributions from the

CTEQ5M parameterization and the corresponding value of αs(MZ) = 0.118 which is evolved according to

the 2-loop solution of the renormalization group equation. The renormalization scale is set to the transverse

jet energy μ2
r = E2

T , and the factorization scale to the average ET of the total jet sample μ2
f = 200GeV2.
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(exclusive k⊥ and Cambridge algorithm). While the inclusive and exclusive k⊥ algorithms

cluster particles in the order of smallest relative transverse momenta (k⊥), the Aachen and

the Cambridge algorithms perform the clustering in the order of smallest angles between

particles. The results have been obtained in the phase space

0.2 < y < 0.6 , 150 < Q2 < 15 000GeV2 (10 < Q2 < 70GeV2) . (7.2)

The analysis at Q2 > 150GeV2 is based on the H1 data taken in the years 1995–1997,

corresponding to an integrated luminosity of Lint = 33 pb−1. The measurement at 10 <

Q2 < 70GeV2 uses the H1 data from 1994, corresponding to an integrated luminosity of

Lint = 2pb−1 and is performed for the inclusive k⊥ algorithm only2.

The jet phase space (as motivated in section 2.4) is defined differently for the inclusive

and for the exclusive jet algorithms by

inclusive jet algorithms: ET,1,Breit + ET,2,Breit > 17GeV , ET,jet,Breit > 5GeV , (7.3)

exclusive jet algorithms: (reference scale)2 = 100GeV2 , ycut = 1 , (7.4)

always: −1 < ηjet, lab < 2.5 .

In all cases we measure inclusive dijet cross sections, i.e. cross sections for the production

of two or more jets within the acceptance region. The dijet cross sections are measured for

a large set of variables, where all variables characterizing the dijet system are calculated

from the two jets with highest ET,jet,Breit. The numerical values of the differential dijet cross

sections can be found in appendix D.1.

In Fig. 7.2 we display the single differential dijet cross section measured with the inclusive

k⊥ algorithm as a function of Q2 in the range 10 < Q2 < 15 000GeV2. The results for the

other jet algorithms are shown in Fig. 7.3 at 150 < Q2 < 15 000GeV2.

The dijet cross sections measured are compared to the perturbative QCD predictions in

next-to-leading order3 (full line) and, in addition, to the product of the next-to-leading order

prediction and the hadronization correction (dashed line), the latter being estimated by the

HERWIG model (Fig. 3.1). While the hadronization corrections have only a small effect

for the inclusive jet algorithms, they lower the perturbative cross section for the exclusive

algorithms by up to 30% at Q2 = 150GeV2. However, when these non-perturbative correc-

tions are considered, the dijet cross sections for all four jet algorithms are described by the

theoretical curves. Only towards small Q2 values (Q2 < 70GeV2) deviations are seen and

the theory curve is below the data. In this kinematic range the next-to-leading order cor-

rections to the dijet cross section are very large (up to a factor of two at Q2 = 10GeV2, see

2This part of the analysis has been performed at an early stage of the present work, where it was

not recognized that the data would not be useful in the QCD analysis, due to the very large theoretical

uncertainties in the low Q2 region. For completeness we have nevertheless included the results in the

following comparisons. Details of the experimental procedure are described in [98, 99].
3The calculation has been performed as described for the inclusive jet cross section, with the only exception

that here the renormalization scale is set to the average transverse energy of the dijet system μr = ET .



124 Experimental Results

10
-4

10
-3

10
-2

10
-1

1

10

10 10
2

10
3

10
4

Q2  / GeV2

dσ
di

je
t /

 d
Q

2   /
 (

pb
/G

eV
2 )

H1 data

NLO  CTEQ5M     μ = 
⎯
ET,jet

(only γ exchange)

NLO ⊗ hadronization correction

inclusive k⊥ algorithm

inclusive dijet cross section

Figure 7.2: The dijet cross section measured with the inclusive k⊥ algorithm as a function

of Q2. The data are compared to the perturbative QCD prediction in NLO (solid line) and

to a theoretical prediction where non-perturbative corrections are included (dashed line) as

described in the text.

Fig. 3.8). In a phase space where NLO corrections are sizeable, we also expect contributions

from higher orders to become relevant.

Deviations between data and theory are also seen at the highest Q2 point (6000 < Q2 <

15 000GeV2), where corrections due to Z◦ exchange (which are not included in the NLO

calculation by DISENT) become sizable (see Fig. 3.7). For this reason we perform all further

comparisons between data and theory only for Q2 < 5000GeV2 where the corresponding

effects are negligible.

In the following a more detailed look into differential dijet distributions for the four jet

algorithms is given. In Figs. 7.4 – 7.7 we present the dijet cross section as a function of the

average transverse jet energy ET , the invariant dijet mass Mjj, the jet pseudorapidity in

the dijet center-of-mass frame η′ and the reconstructed parton momentum fraction ξ. These

distributions are shown in different regions of Q2, except for the η′ distribution, which is

presented in regions of different ET . As for the Q2 distribution in Fig. 7.3, we compare all

results to the perturbative QCD prediction in next-to-leading order, and to a theory curve

that includes non-perturbative corrections. In general we see a very good description of all

distributions measured. Before we discuss details of the single observables, we summarize

some general features.
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text.
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��� ��� Q2 ���� The data at lower momentum transfers Q2 < 70GeV2, which are only

measured for the inclusive k⊥ algorithm (top left), are significantly above the theoretical

predictions. This has to be seen, however, in the context of the very large NLO corrections

(up to a factor of two at Q2 = 10GeV2, see Fig. 3.8). The largest discrepancies are seen

at smallest ET and smallest Mjj and, correspondingly, at smallest ξ. At large values of

ET > 20GeV or Mjj > 40GeV the low Q2 data are reasonably well described by the

perturbative calculation.

��� ����
��$� 2�� ��5������� The dijet cross sections for both inclusive jet definitions, the

inclusive k⊥ algorithm (top left) and the Aachen algorithm (top right) are always of similar

size and shape. This is, of course, expected since at next-to-leading order both definitions

are identical and the predicted hadronization corrections are small for both. In all cases

already the perturbative prediction gives a good description of the data.

��� �1��
��$� 2�� ��5������� The dijet cross sections, measured with the exclusive k⊥
algorithm (bottom left) and the Cambridge algorithm (bottom right) also show very similar

shapes, but are of slightly different size. For both exclusive algorithms some regions of phase

space have large non-perturbative contributions (above 60%). These are the regions of small

transverse jet energies and small dijet masses (and, correspondingly, small ξ values). In

these regions the perturbative predictions alone are obviously not able to describe the data.

Within the estimated size of the non-perturbative corrections, however, theory and data are

mostly consistent, except in those regions where these corrections are too large. This may

confirm our arguments from section 3.1 that the hadronization corrections, as estimated by

parton-cascade models, are only reliably for comparisons to NLO calculations if the size of

these corrections is small.

The distribution of the average transverse energy ET of the dijet system (Fig. 7.4) is

similar to the ET distribution of the inclusive jet sample (Fig. 7.1). For all algorithms we

observe a harder ET spectrum towards larger Q2. The same is seen in the distribution of

the dijet mass (Fig. 7.5) which fall more steeply towards higher masses at lower Q2.

The jet pseudorapidity in the dijet center-of-mass frame is given by the variable η′, which
is reconstructed from the difference of the jet pseudorapidities in the Breit frame. The η′

distribution is shown in Fig. 7.6 in different regions of ET . We see that at higher ET large

values of η′ are more strongly suppressed, such that the fraction of jets produced centrally

in the dijet center-of-mass frame is larger at high ET .
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Figure 7.4: The dijet cross section as a function of the average transverse jet energy in the

Breit frame in different regions of Q2 for the inclusive k⊥ algorithm (top left), the Aachen

algorithm (top right), the exclusive k⊥ algorithm (bottom left) and the Cambridge algorithm

(bottom right). The data are compared to the perturbative QCD predictions in NLO (solid

line) and to a theoretical prediction where non-perturbative corrections are included (dashed

line) as described in the text.



128 Experimental Results

10
-5

10
-4

10
-3

10
-2

10
-1

1

10

10 2

Mjj  /  GeV

d2 σ di
je

t /
 d

M
jj 

dQ
2   /

 (
pb

/G
eV

3 )

H1 data

NLO ⊗ hadron.
NLO  CTEQ5M

Q2 / GeV2

[10 ... 70]
(× 100)

[150 ... 200]
(× 100)

[200 ... 300]
(× 10)

[300 ... 600]

[600 ... 5000]

15 20 30 40 60 100

incl. k⊥ algo

10
-4

10
-3

10
-2

10
-1

1

Mjj  /  GeV

d2 σ di
je

t /
 d

M
jj 

dQ
2   /

 (
pb

/G
eV

3 )

H1 data

NLO ⊗ hadron.
NLO  CTEQ5M

Q2 / GeV2

[150 ... 200]
(× 100)

[200 ... 300]
(× 10)

[300 ... 600]

[600 ... 5000]

15 20 30 40 60 100

Aachen algo

10
-4

10
-3

10
-2

10
-1

1

Mjj  /  GeV

d2 σ di
je

t /
 d

M
jj 

dQ
2   /

 (
pb

/G
eV

3 )

H1 data

NLO ⊗ hadron.
NLO  CTEQ5M

Q2 / GeV2

[150 ... 200]
(× 100)

[200 ... 300]
(× 10)

[300 ... 600]

[600 ... 5000]

15 20 30 40 60 100

excl. k⊥ algo

10
-4

10
-3

10
-2

10
-1

1

Mjj  /  GeV

d2 σ di
je

t /
 d

M
jj 

dQ
2   /

 (
pb

/G
eV

3 )

H1 data

NLO ⊗ hadron.
NLO  CTEQ5M

Q2 / GeV2

[150 ... 200]
(× 100)

[200 ... 300]
(× 10)

[300 ... 600]

[600 ... 5000]

15 20 30 40 60 100

Cambridge algo

Figure 7.5: The dijet cross section as a function of the invariant dijet mass in different

regions of Q2 for the inclusive k⊥ algorithm (top left), the Aachen algorithm (top right), the

exclusive k⊥ algorithm (bottom left) and the Cambridge algorithm (bottom right). The data

are compared to the perturbative QCD predictions in NLO (solid line) and to a theoretical

prediction where non-perturbative corrections are included (dashed line) as described in the

text.



7.2 The Dijet Cross Section 129

10
-1

1

10

0 0.5 1 1.5 2

η’  =  1/2 ⏐ηBreit,1−ηBreit,2⏐

d2 σ di
je

t /
 d

η’
 d

⎯ E
T

,B
re

it 
 / 

(p
b/

G
eV

)

H1 data

NLO ⊗ hadron.
NLO  CTEQ5M

8.5 < 
⎯
ET,Breit < 12 GeV

12 < 
⎯
ET,Breit < 17 GeV

17 < 
⎯
ET,Breit < 35 GeV

(150 < Q2 < 5000 GeV2)

(× 2)

incl. k⊥ algo
10

-1

1

10

0 0.5 1 1.5 2

η’  =  1/2 ⏐ηBreit,1−ηBreit,2⏐

d2 σ di
je

t /
 d

η’
 d

⎯ E
T

,B
re

it 
 / 

(p
b/

G
eV

)

H1 data

NLO ⊗ hadron.
NLO  CTEQ5M

8.5 < 
⎯
ET,Breit < 12 GeV

12 < 
⎯
ET,Breit < 17 GeV

17 < 
⎯
ET,Breit < 35 GeV

(150 < Q2 < 5000 GeV2)

(× 2)

Aachen algo

10
-1

1

10

0 0.5 1 1.5 2

η’  =  1/2 ⏐ηBreit,1−ηBreit,2⏐

d2 σ di
je

t /
 d

η’
 d

⎯ E
T

,B
re

it 
 / 

(p
b/

G
eV

)

H1 data

NLO ⊗ hadron.
NLO  CTEQ5M

8.5 < 
⎯
ET,Breit < 12 GeV

12 < 
⎯
ET,Breit < 17 GeV

17 < 
⎯
ET,Breit < 35 GeV

(150 < Q2 < 5000 GeV2)

(× 2)

excl. k⊥ algo
10

-1

1

10

0 0.5 1 1.5 2

η’  =  1/2 ⏐ηBreit,1−ηBreit,2⏐

d2 σ di
je

t /
 d

η’
 d

⎯ E
T

,B
re

it 
 / 

(p
b/

G
eV

)

H1 data

NLO ⊗ hadron.
NLO  CTEQ5M

8.5 < 
⎯
ET,Breit < 12 GeV

12 < 
⎯
ET,Breit < 17 GeV

17 < 
⎯
ET,Breit < 35 GeV

(150 < Q2 < 5000 GeV2)

(× 2)

Cambridge

Figure 7.6: The dijet cross section as a function of the jet pseudorapidity in the dijet

center-of-mass frame. The data are measured in different regions of ET for the inclusive k⊥
algorithm (top left), the Aachen algorithm (top right), the exclusive k⊥ algorithm (bottom

left) and the Cambridge algorithm (bottom right). The data are compared to the perturbative

QCD predictions in NLO (solid line) and to a theoretical prediction where non-perturbative

corrections are included (dashed line) as described in the text.
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Figure 7.7: The dijet cross section as a function of the reconstructed parton momentum

fraction ξ. The data are measured in different regions of Q2 for the inclusive k⊥ algorithm

(top left), the Aachen algorithm (top right), the exclusive k⊥ algorithm (bottom left) and the

Cambridge algorithm (bottom right). The data are compared to the perturbative QCD pre-

dictions in NLO (solid line) and to a theoretical prediction where non-perturbative corrections

are included (dashed line) as described in the text.
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Figure 7.8: The dijet cross section for the inclusive k⊥ algorithm as a function of the

variables ξ (left) and xp (right). The perturbative QCD prediction in NLO (solid line)

is compared to the measured dijet cross section. In addition the contribution from gluon

induced processes is shown (dashed line).

The variable ξ represents (in the leading order approximation) the fraction of the proton

momentum carried by the incoming parton. The dijet cross section in bins of ξ is therefore

directly proportional to the size of the parton densities at a specific parton momentum

fraction. In Fig. 7.7 the ξ distributions are shown for the four jet algorithms. At Q2 >

150GeV2 the dijet data are sensitive to partons of momentum fractions 0.01 � ξ � 0.2,

increasing with increasing Q2.

Due to its direct sensitivity to the parton densities the ξ distribution is of special im-

portance in the QCD analysis, for the determination of the gluon density in the proton.

For this reason we display the distributions of ξ and further variables now in a different

representation for the inclusive k⊥ algorithm, showing also the fractional contribution from

gluon induced processes to all distributions. The data are here compared to the perturbative

next-to-leading calculation only.
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Figure 7.9: The dijet cross section for the inclusive k⊥ algorithm as a function of the

kinematic variables xBj (left) and y (right). The perturbative QCD prediction in NLO (solid

line) is compared to the measured dijet cross section. In addition the contribution from gluon

induced processes is shown (dashed line).

In Fig. 7.8 (left) we show again the ξ distribution for the inclusive k⊥ algorithm. The

gluon induced contribution to the dijet cross section is indicated by the dashed line. This

contribution can be seen to decrease strongly with increasing Q2 and with increasing ξ. In

this and the following distributions we see that the theory gives a good description of the

data, independent of the size of the fractional gluon contribution. This may give confidence

that the agreement between theory and data is not accidental, but that perturbative QCD

is able to describe jet production in deep-inelastic scattering, such that these data can be

used for the determination of parameters, as e.g. αs or the gluon density in the proton.

The distribution of the partonic scaling variable xp is shown in the right plot in Fig. 7.8.

It is defined as the ratio of the Bjorken scaling variable xBj and the parton momentum

fraction ξ. We observe a strong increase of xp towards larger Q2. While in the inclusive

deep-inelastic scattering cross section the variable xBj is directly related to the momentum
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Figure 7.10: The dijet cross section for the inclusive k⊥ algorithm as a function of the jet

pseudorapidity η′ in different regions of Q2 (left) and ET (right). The perturbative QCD

prediction in NLO (solid line) is compared to the measured dijet cross section. In addition

the contribution from gluon induced processes is shown (dashed line).

fraction of the incoming parton, the xp distribution demonstrates that this is not longer the

case in dijet production, where xBj can be very different from ξ (by a factor of 100 at small

Q2).

Variables connected to the event kinematics are shown in Fig. 7.9. The accessible range

of the Bjorken scaling variable xBj (left) shows a strong Q2 dependence, varying over three

decades within the range 2 · 10−4 < xBj < 2 · 10−1 for 10 < Q2 < 5000GeV2. The inelasticity

variable y shows a slight decrease towards larger values in all Q2 regions, with an almost

constant gluon fraction within the single Q2 ranges.

The variable η′ (already discussed before in Fig. 7.6) is shown in Fig. 7.10 in different

regions of Q2 (left) and in regions of ET (right). In contrast to the ET dependence of the η′

distribution we do not observe any change with Q2. It is again visible that the gluon fraction

decreases towards larger Q2, while it is only weakly depending on ET .
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Figure 7.11: The dijet cross section for the inclusive k⊥ algorithm as a function of the

pseudorapidity of the backward (left) and the forward jet (right) in the laboratory frame.

The perturbative QCD prediction in NLO (solid line) is compared to the measured dijet cross

section. In addition the contribution from gluon induced processes is shown (dashed line).

The last dijet distributions shown here, are mainly presented to study how well the

variables are described by theory that define the angular acceptance region of the dijet event

sample. In Fig. 7.11 we display the jet pseudorapidity distributions in the laboratory frame,

for the backward jet (left) and for the forward jet (right). At Q2 < 70GeV2 we see that the

deviations between data and theory are connected to jets, produced towards the proton (i.e.

the forward) direction. These are the only distribution for the low Q2 data, in which one

sees a clear difference which does not only affect the size of the cross section, but also the

shape of the distribution.

At higher Q2 the data are well described by the theory, such that we do not have to

worry that any conclusion (or result of the QCD fit) may be an artifact, depending on the

angular acceptance region chosen in the analysis.
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The measurements of the three-jet and the four-jet cross sections have been performed in

collaboration with Arno Heister. Preliminary results of the three-jet analysis have been

published in a conference contribution by the H1 collaboration [100]. A detailed description

of the analysis is given in Arno Heister’s Diploma thesis [96]. The analysis is based on

data taken in the years 1995–1997 by the H1 experiment, corresponding to an integrated

luminosity of Lint = 33 pb−1. The kinematic range is given by

0.2 < y < 0.6 , 150 < Q2 < 5000GeV2 . (7.5)

Jets are defined by the inclusive k⊥ jet algorithm in the Breit frame. Only jets are considered

which satisfy

ET,jet,Breit > 5GeV , and − 1 < ηjet, lab < 2.5 . (7.6)

To measure the three-jet (four-jet) cross section we select events with, at least, three

(four) jets with the additional requirement

M3 jet > 25GeV , and M4 jet > 25GeV respectively , (7.7)

where the invariant multi-jet mass Mn jet is calculated from the three (four) highest ET jets.

Fig. 7.12 shows the three-jet and the four-jet cross sections as a function of Q2 (left), the

invariant multi-jet mass (right) and the average transverse jet energy of the multi-jet system

in the Breit frame (bottom). The results are compared to perturbative QCD calculations4 in

leading order (i.e. O(α2
s) and O(α3

s), respectively). In addition we show the product of the

leading order calculation and the expected hadronization corrections5. The hadronization

corrections to the three-jet cross section are on average 20% and the corrections to the four-

jet cross section are 50%, both decreasing towards higher invariant jet masses and transverse

jet energies.

While the perturbative QCD prediction is in most bins slightly above the data, we obtain

a good description when we consider the non-perturbative corrections. Only at the smallest

Q2 and M3 jet the theory curve for the three-jet cross section is below the data.

Further results from this analysis on three-jet and four-jet production, including cross

sections for different variables, as well as angular jet distributions in the multi-jet center-of-

mass frame can be found in [96, 100].

4The calculations have been performed by the program MEPJET [57], using CTEQ5L parton distribu-

tions with the corresponding value of αs(MZ) = 0.127 which is evolved according to the 1-loop solution

of the renormalization group equation. The renormalization and factorization scales are set to the average

transverse jet energy of the three-jet (four-jet) system in the Breit frame μr = μf = ET . The calculation of

the three-jet cross section includes quark mass effects, which lower the results by approximately 3%.
5The hadronization corrections have been estimated in [96] using the models HERWIG and LEPTO which

agree within a few percent for all distributions shown.
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Figure 7.12: The three-jet and the four-jet cross sections, measured using the inclusive k⊥
jet algorithm as a function of Q2 (left), the invariant three-jet mass (right) and the average

transverse energy ET of the multi-jet system in the Breit frame (bottom). The data are

compared to the perturbative QCD prediction in leading order (solid line) and to a prediction

including hadronization corrections (dashed line) as described in the text.
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Figure 7.13: Jet shapes measured in an inclusive dijet sample for the inclusive k⊥ algorithm.

The jet shapes are compared for different transverse jet energies in three different ranges of

the pseudorapidity in the Breit frame ηjet,Breit.
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The internal structure of jets is studied in terms of jet shapes and subjet multiplicities (the

exact definitions of the observables are given in section 2.4). We have already presented jet

shapes and subjet multiplicities for jets in the inclusive jet sample in section 5.2.2, where

reconstructed data distributions have been compared to the Monte Carlo simulation. These

distributions are, however, not corrected for detector effects and are only intended to test

the simulation.

A full analysis of internal jet structure, providing corrected data distributions, has been

performed in collaboration with Lars Sonnenschein and is published in [101]. A detailed

description of the experimental procedure can be found in Lars Sonnenschein’s Diploma

thesis [97]. Here we only give a brief description of the main results.

The analysis is based on H1 data taken in the year 1994, corresponding to an integrated

luminosity of Lint � 2 pb−1. The measurement is performed in the phase space given by

y > 0.15 , Q2 > 10GeV2 , E ′ > 11GeV , θe > 156◦ . (7.8)

We have measured the internal structure of jets in an inclusive dijet sample, employing the

inclusive k⊥ algorithm in the Breit frame6. The jet phase space is defined by

ET, jet,Breit > 5GeV and − 1 < ηjet, lab < 2 . (7.9)

The jet shapes and the subjet multiplicities are presented in Figs. 7.13 and 7.14 in three

different regions of the jet pseudorapidity ηjet,Breit. In each ηjet,Breit region the distributions

for jets of different transverse energies ET in the Breit frame are shown.

6Further results, obtained with a cone jet algorithm can be found in references [97, 101].
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The jet shape ψ(r) is defined as the average fractional transverse jet energy contained in a

cone of radius r (in η-φ space), around the jet axis. In Fig. 7.13 the ψ(r) distribution is

shown as a function of the cone radius r. At fixed r the jets of higher ET have larger values

of ψ(r), indicating that these jets are more collimated.

We also observe a dependence of the jet shape on ηjet,Breit which is more pronounced for

jets of lower ET . The jets at larger ηjet,Breit (i.e. towards the proton direction) are seen to

be broader than backward jets (towards the photon direction).

In a recent analysis the OPAL collaboration has presented a measurement of jet shapes

in dijet production in γγ collisions [102]. A comparison of these results and our results has

been made in [103] and it is seen that the jets from both processes have very similar shapes.

6
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The average number of subjets 〈Nsubjet(ycut)〉 is shown in Fig. 7.14 as a function of the

subjet resolution parameter ycut, which specifies the relative squared transverse momentum

at which local structures (i.e. subjets) within the jet are resolved. The region of larger

ycut is sensitive to perturbative processes whereas non-perturbative contributions become

increasingly important with decreasing ycut. The subjet multiplicity therefore allows to

study the transition from perturbative to non-perturbative processes, while the jet shape is

influenced by both perturbative and non-perturbative processes over the whole r range.

At a fixed value of ycut the jets of higher ET have a smaller average number of subjets,

and jets towards the proton direction have a larger number of subjets. Although the jet

shapes and the subjet multiplicities are sensitive to different aspects of the jet broadening,
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Figure 7.15: A comparison of the measured jet shape (left) and the average number of

subjets (right) with the predictions of the Monte Carlo generator LEPTO for the total jet

sample (solid line), as well as for the jet subsamples consisting only of quark (dashed line)

and gluon induced jets (dotted line). In addition, also the predictions for the observables

before hadronization are included (dashed-dotted line).

consistent conclusions can be drawn for both observables: The jet broadening increases at

lower ET and towards the proton direction.

The data at higher ET and smallest ηjet,Breit are compared to the predictions of LEPTO7

in Fig. 7.15. Although in previous analyses of DIS jet data in similar kinematic regions

(see e.g. [104, 105]) QCD models like LEPTO, based on leading order matrix elements

combined with parton showers, were not able to describe the jet rates (respectively the jet

cross sections), LEPTO gives a good description of the internal structure of these jets.

Also included in Fig. 7.15 is the LEPTO prediction of the observables before hadroniza-

tion (i.e. for jets on “parton-level”). We see that these jets are significantly narrower and

that the largest fraction of the broadness develops during the hadronization process. It is

therefore surprising that basic characteristics of the perturbative phase are still visible after

hadronization, as we will show in the following.

Within a model based on leading order matrix elements combined with parton showers,

we can distinguish whether a jet is induced by a quark or by a gluon. Technically this is done

by comparing the direction of a selected jet to the direction of a quark or a gluon emerging

from the matrix element. The LEPTO predictions for quark and gluon induced jets are both

included in Fig. 7.15. It is seen that (within this model!) gluon jets are significantly broader

than quark jets, a feature that is preserved after hadronization.

In the LEPTO prediction (as well as in next-to-leading order calculations) the boson-

7The LEPTO [65] predictions have been obtained without the “Soft Color Interaction” model, using the

CTEQ4L parton distributions [77].
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gluon fusion process accounts for 80% of all dijet events in this event sample while only 20%

of the events are from QCD-Compton processes.. Correspondingly 90% of the jets are quark

induced. Therefore the total jet sample mainly reflects the properties of quark jets.

Given that these model predictions give a reasonable description of the observed jet

structure we conclude that the jets measured are consistent with being mainly induced by

quarks, i.e. that the dijet event sample is dominated by the boson-gluon fusion process.

Due to the large size of the non-perturbative contributions, as visible in Fig. 7.15, we

consider a comparison to perturbative QCD predictions in fixed order αs for these observables

not to be meaningful.

7�1 �
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We have presented measurements of jet observables in the Breit frame in deep-inelastic

scattering over a large range of four-momentum transfers 10 < Q2 < 15 000GeV2 and

transverse jet energies 50 � E2
T � 2500GeV2. A large variety of observables has been

employed for detailed tests of the theoretical predictions.

��� -������ ����'���

What we call “central analysis” contains the results that we will use in the following QCD

analysis. The inclusive jet cross section and the dijet cross section have been mea-

sured for a comprehensive set of variables at large momentum transfers Q2 > 150GeV2

where the perturbative QCD predictions in next-to-leading order are seen to have small

uncertainties. These results have been obtained using the inclusive k� ordered jet clus-

tering algorithm for which hadronization corrections are small (always below 10%). The

theoretical predictions give a good description of the data over the whole phase space, in

regions which are dominated by boson-gluon fusion, as well as in regions dominated by the

QCD-Compton process. This central analysis has been extended in various respects.

#�9����� 3�� #�5�������

The measurements of the inclusive jet and the dijet cross section have been repeated using

different types of jet definitions. Switching to an angular ordered jet clustering algo-

rithm (“Aachen algorithm”) leads to very similar cross sections. While the perturbative

NLO predictions are identical for this definition, the measured cross sections are slightly

smaller (by a few percent). This is perfectly consistent with the prediction of slightly larger

hadronization corrections (also a few percent) for this jet definition.

We have also redone the analysis using exclusive jet clustering algorithms, i.e. jet

definitions which cluster all final state particles into the hard jets (or the proton remnant).

A k⊥ ordered and an angular ordered jet definition (“Cambridge algorithm”) have been
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used. Both of these algorithms have significantly larger hadronization corrections (up to

30% at Q2 = 150GeV2) than the inclusive jet algorithms. However, the model estimates of

these corrections can account for the observed differences to the perturbative QCD predic-

tions in next-to-leading order. The combined theoretical predictions (i.e. perturbative and

non-perturbative contributions) give a good description of the dijet data, also for these jet

definitions.

��!��� 3�� �
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One part of the analysis is dedicated to the production rates of higher jet multiplicities.

Differential cross sections have been measured in three-jet production and in four-jet

production as functions of the momentum transfer Q2, the average transverse jet energy

ET in the Breit frame and the invariant three-jet and four-jet mass Mn jet. These multi-jet

cross sections are subject to relatively large hadronization corrections (20% for the three-jet

cross section and 50% for the four-jet cross section). For these observables perturbative

QCD calculations are only available in leading order (i.e. O(α2
s) and O(α3

s) for the three-jet,

respectively the four-jet cross section). When these leading order predictions are combined

with the estimated hadronization corrections they give a good description of the data.

�������� 3�� 6��
��
��

The internal structure of jets has been investigated in terms of jet shapes and subjet

multiplicities. For both quantities we observe a decrease of the jet broadness with in-

creasing transverse jet energy. In the range of the transverse jet energies studied here, both

observables are dominated by non-perturbative processes, and are well described by models

combining parton showers and phenomenological hadronization models.

 1������� �� ��� Q2

The dijet analysis at high Q2 has also been extended to the region of 10 < Q2 < 70GeV2.

In this region (where hadronization corrections for the inclusive k⊥ algorithm are still below

10%) the perturbative QCD prediction in next-to-leading order is no longer able to describe

the size of the measured dijet cross section (except maybe at ET > 20GeV orMjj > 40GeV).

In this kinematic region, however, next-to-leading order corrections are very large (up

to a factor of two at Q2 = 10GeV2) and terms of higher orders in αs are likely to be

non-negligible.

The exact numerical values of the inclusive jet cross sections and the dijet cross sections

are listed in appendix D.1.
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Before we interpret the measurements in the framework of perturbative QCD, we introduce

various strategies of performing the QCD analysis and describe the physical goals and the

physical and technical choices that we have made.

8�� 9���� 9� ���
+

As a first step we briefly recall the results from part one and part two and discuss what has

been obtained by now experimentally and theoretically.

������������' ; � %�����

We have compared properties of different jet observables to identify those for which the theory

is most predictive. Requiring small hadronization corrections and a small renormalization

scale dependence, we find that for the inclusive k⊥ algorithm the theoretical predictions are

safe at large momentum transfers Q2 � 100GeV2 for sufficiently large transverse jet energies.

In this region we expect the theory to describe the production of jets in deep-inelastic scat-

tering. In the region of Q2 � 100GeV2 the uncertainties of perturbative calculations become

large and the influence of non-perturbative corrections becomes increasingly important. It

can therefore not be expected that theory and data agree in this kinematic region.

 1%����������'

The measurement has provided us many distributions of the inclusive jet cross section and

the dijet cross section for different jet definitions. For all distributions the full list of uncer-

tainties is available for all different sources as well as all correlations. The most important

distributions are those which can be directly related to the parameters which we intend to

determine in the subsequent QCD analysis. These are the differential jet cross sections as

a function of the energy scales ET and Q2 (available for both the inclusive jet and the dijet

cross section) and the dependence on the reconstructed parton momentum fraction ξ (dijet

cross section).
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Using parton density functions obtained in global fits to DIS structure function data and

Drell-Yan data and a value of αs(MZ) as e.g. determined in e+e− collisions, the theory

describes the jet data in the phase space region Q2 > 100GeV2 where it is expected (from

a priori arguments) to be reliable. Only in the region Q2 < 100GeV2 we see discrepancies

between theory and data which are increasing towards smaller Q2.

The good agreement in the region of Q2 > 100GeV2 is seen in all differential distribu-

tions. We mean that the theory is “in principle” able to describe the DIS jet data. By

“in principle” we mean that theory would give a perfect description if the “true” values of

the free parameters (αs and parton densities) were known. We therefore intend to use the

distributions measured and fit the free parameters of the theory: αs(MZ), the gluon and the

quark densities in the proton.

���������� #��� 6��* ��� ����
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As we will show below, a consistent determination of the gluon density from the jet cross

sections requires the knowledge of the quark densities from additional data. For this purpose

we include data on the inclusive ep cross section in the QCD analysis. The data are taken

from a recent publication by the H1 collaboration [32] in which the inclusive reduced double

differential ep cross section (d2σDIS/dxBjdQ
2) is measured within the range 150 < Q2 <

30 000GeV2. Since the present jet cross section measurements are based on similar analysis

methods the correlations between the experimental uncertainties of both data sets can be

taken into account in the statistical analysis.

8�� ��� ���������� �
 ��� &�� ����

The free parameters in a perturbative QCD calculation of cross sections in deep-inelastic

scattering are the parton density functions and the strong coupling constant αs. In this

section we discuss in what way the cross sections measured are sensitive to these parameters.

We also specify the assumptions needed to determine these parameters in the QCD analysis.

To visualize the sensitivity of the perturbative cross sections to the different parameters

of the theory we look at the relations in the leading order approximation1. In leading order

the inclusive ep cross section and the jet cross section can be written in the symbolic form

inclusive DIS: σ̃incl.DIS ∝ q ,

jets in DIS: σjet ∝ αs · (cg g + cq q) . (8.1)

In these formulae g denotes the gluon density in the proton and q a specific sum of the quark

densities over all flavors (see the discussion in section 8.2.2). The coefficients cg and cq are
1The inclusion of next-to-leading order corrections changes these relations slightly but it does not affect

our discussion in principle. In the QCD analysis the NLO corrections are, of course, fully considered.
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predicted by perturbative QCD. From the relations (8.1) one sees that the quark densities

are directly constrained by the inclusive ep cross section. Using the jet cross section we

can then determine either one of the gluon density or αs. For a simultaneous determination

of both additional information is needed, e.g. a measurement of the jet cross section in a

different kinematic region where the perturbative prediction is given by

σ′
jet ∝ αs · (c′g g + c′q q) with

c′g
c′q

�= cg
cq
. (8.2)

This is in fact the case for the inclusive jet and the dijet cross section in different regions

of Q2, as shown in Figs. 3.6 and 7.8 where the fractional gluon induced contributions vary

strongly with Q2.

Using jet cross sections in different Q2 regions therefore yields a third equation allowing

to determine the three independent parameters simultaneously. However, the gluon and the

quark densities are not single parameters in the fit but functions of the momentum fraction

x. It has to be checked whether the data can constrain the functional forms of the parton

distributions and αs simultaneously.
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The value of the strong coupling constant αs(μr) is a function of the renormalization scale

μr. Since the dependence of αs(μr) on μr is predicted by perturbative QCD the value at any

scale can be calculated from the value at a specified scale μr,0. We choose μr,0 as the mass of

the Z0 boson μr,0 =MZ = 91.187GeV [21] and compute the μr dependence using the exact

numerical solution of the renormalization group equation (1.6) at four-loop accuracy2. The

fitted parameter is αs(MZ). We will now explain how we choose the renormalization scales

at which the perturbative cross sections are calculated.

In the calculation of the inclusive ep cross section we identify the renormalization scale

μ2
r with the four-momentum transfer Q2, the only hard scale appearing in the calculation.

In jet production a further hard scale is given by the transverse jet energy ET in the Breit

frame. This scale is directly related to the jet production vertices in the Feynman diagrams

and specifies the physical scale at which hard QCD radiation is resolved. This scale μr = ET

is usually chosen in the computations of jet cross sections in p̄p collisions, i.e. processes which

are very similar to jet production in ep collisions in the Breit frame.

In section 3.2 we have compared properties of the perturbative predictions for different

choices of the renormalization scale (μ2
r = E2

T , Q
2, E2

T + Q2) and have seen that in most

regions of phase space the perturbative calculations have the smallest scale dependences and

2One may prefer to use the 2-loop solution because the perturbative cross sections are computed at next-

to-leading order accuracy. However, in Fig. 1.4 we have shown that within the range of scales considered

here (7GeV < μr < MZ) the difference between both formulae is always below three per mil and therefore

negligible for our purposes.
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smallest NLO corrections for the choice μ2
r = E2

T . For these reasons we decide to use the

renormalization scale μ2
r = E2

T for the central results. We will also study the influence of

using the scale μ2
r = Q2 on the results (and their scale dependence).

>#"#" ������ �
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As we have discussed above, our goal is a combined fit of the gluon and the quark densities

in the proton. These comprise eleven different parton types: the gluon (g) and the quark

flavors up (u), down (d), strange (s), charm (c), bottom (b) as well as the five corresponding

anti-quarks3 It is obvious that the data sets considered here are not sufficient to constrain

all of these quark distributions simultaneously. However, using the relations between the

perturbative coefficients of the different quark flavors we can replace the ten different quark

flavors by two linear combinations. The following steps are based on the standard model

prediction that the electromagnetic coupling of the photon to quarks is proportional to their

electrical charge squared, irrespective of their flavor. Therefore two assumptions have to be

made.

❍ Neglect of Z0 exchange

The phase space considered in this analysis is restricted to four-momentum transfers

Q2 < 1000GeV2 (inclusive ep cross section) and Q2 < 5000GeV2 (jet cross sections).

In this kinematic range the contributions from Z0 exchange and γZ0 interference are

negligible (as shown in section 3.2) and it is safe to only consider photon exchange.

❍ Neglect of quark masses

For the calculation of the inclusive ep cross section at Q2 > 150GeV2 quark masses

can be safely neglected. The effects of quark masses for the dijet cross section have

been investigated in section 3.2 using a leading order calculation and were found to be

small.

Neglecting quark masses and taking only photon induced processes into account the pertur-

bative coefficients for the quarks fulfill the following relations

cu = cc = ct = cū = cc̄ = ct̄ and cd = cs = cb = cd̄ = cs̄ = cb̄ . (8.3)

Only three coefficients are independent. We choose these as cg, cΣ and cΔ, given by linear

combinations of the single flavor coefficients:

cG ≡ cgluon ,

cΣ ≡ 1/3 (4 cd − cu) ,

cΔ ≡ 3 (cu − cd) . (8.4)
3In the range of four-momentum transfers and transverse jet energies considered here there are no con-

tributions from the top quark.
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These coefficients have been chosen such that they correspond to the following linear com-

binations of parton densities4

Gluon: xG(x) ≡ x g(x) ,

Sigma: xΣ(x) ≡ x
∑
a

(qa(x) + q̄a(x)) ,

Delta: xΔ(x) ≡ x
∑
a

e2a (qa(x) + q̄a(x)) , (8.5)

where the sums run over all quark flavors a and ea denotes the electrical charge of the quark.

Using (8.3) and the definitions (8.4) and (8.5) it can easily be verified that

cGG(x) + cΣΣ(x) + cΔΔ(x) = cgg(x) +
∑
a

caqa(x) . (8.6)

We will now discuss at which order of αs these parton densities contribute to the different

processes under consideration. A selection of Feynman diagrams of different orders in αs is

shown in Fig. 8.1. From the left to the right they correspond to processes of order O(α0
s),

O(α1
s) and O(α2

s).

❍ The Δ Quark Density

The Δ density is defined as the sum over the single quark densities weighted with their

electrical charges squared. Δ(x) enters the cross section whenever the incoming quark

couples directly to the photon (via its electrical charge). It contributes to the inclusive

ep cross section and to the jet cross section at all orders of αs.

❍ The Gluon Density

The gluon density is probed in processes of order O(α1
s) and higher. It does not

contribute to the inclusive ep cross section at leading order, but at next-to-leading

order and beyond. The jet cross sections, however, are sensitive to the gluon density

at leading order and beyond.

❍ The Σ Quark Density

The Σ density is defined as the sum of the quark densities of all flavors (not weighted

with their electrical charge). It is therefore relevant in all processes where the incoming

quark does not couple directly to the photon, as e.g. shown in the bottom of Fig. 8.1.

These processes are at least of order O(α2
s). The Σ density does not contribute to

the inclusive ep cross section up to next-to-leading order. It enters only the jet cross

sections via the next-to-leading order corrections. At large Q2 these contributions

are, however, very small (4.5% for the dijet cross section at 150 < Q2 < 200GeV2,

decreasing to 2% at 600 < Q2 < 5000GeV2).

4We do not explicitly display here the dependence on the factorization scale.
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Delta:
xΔ(x) ≡ x

∑
a e

2
a (qa(x) + q̄a(x))

inclusive DIS: LO and NLO
jet production: LO and NLO

O(α0
s) O(αs) O(α2

s)

Gluon:
xG(x) ≡ x g(x)

inclusive DIS: NLO
jet production: LO and NLO

O(αs) O(α2
s)

Sigma:
xΣ(x) ≡ x

∑
a(qa(x) + q̄a(x))

(inclusive DIS: NNLO)
jet production: NLO

O(α2
s)

Figure 8.1: Examples of Feynman diagrams in different orders of αs describing the coupling

of the virtual photon to the different parton densities.

At orders O(α0
s) and O(α1

s) the contributions from different quark flavors are proportional

to their electrical charge squared. This leads to the relation

cu = 4 cd (at O(α0
s) and O(α1

s)) . (8.7)

The coefficient cΣ in (8.4) vanishes therefore at orders O(α0
s) and O(α1

s), and the only

contributions to the cross sections are from the gluon density xG(x) and xΔ(x). The quark

density xΣ(x) starts to contribute at order O(α2
s). The following table gives an overview of

the order at which the parton densities contribute to the different processes (up to NLO).
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LO NLO
σ̃incl. DIS xΔ(x) xΔ(x), xG(x)

σjets xG(x), xΔ(x) xG(x), xΔ(x), xΣ(x)

In summary we state that we can reduce the number of parton densities in the QCD analysis

by building suitable linear combinations of the quark densities. We are left with three

different parton densities: the gluon density, the quark density xΔ(x) and the quark density

xΣ(x). Up to NLO the latter does not contribute to the inclusive ep cross section. It

enters the jet cross sections only via the NLO corrections giving only small contributions.

We therefore conclude that taking the xΣ(x) from the results of global fits is only a weak

assumption in our QCD analysis which will not bias our results. We are then left with two

parton densities that account (up to NLO) for the inclusive ep cross section and for more

than 95% of the jet cross section: the gluon density xG(x) and the quark density xΔ(x).

This justifies the picture of a single quark density that we have used in the beginning of

this section in (8.1).

-����� �� ��� ������������� 6����

In principle the same arguments invoked in the choice of the renormalization scale μr apply

also to the factorization scale μf for the inclusive ep cross section and for the jet cross section.

However, we make a different choice for the following reasons.

We have combined the different parton flavors into three independent parton density

functions xG(x, μf ), xΔ(x, μf) and xΣ(x, μf ). These three parton densities are, however,

only independent as long as no evolution between different scales μf is performed. The

evolution of the gluon density is coupled to the evolution of xΣ(x, μf ). Furthermore, since

xΔ(x, μf ) is not an eigenstate of the DGLAP evolution operators the evolution requires

its decomposition into a non-singlet and a singlet (i.e. xΣ(x, μf )). This introduces an ad-

ditional dependence between both quark densities. To avoid mixing between the different

parton densities we do not evolve the parton distributions to different scales but perform the

perturbative calculations at a fixed value of the factorization scale μf = μ0. We will now

discuss under which circumstances this procedure is justified.

The jet cross sections are sensitive to the parton distributions in the x-range of 0.008 �
x � 0.3. In this x-range the factorization scale dependence of the parton density functions

is very small (Fig. 1.8). The remaining μ2
f dependence (given by the DGLAP evolution

equations) is largely compensated by a corresponding term ∝ αs ln(μ
2
f/μ

2
0) in the perturba-

tive coefficients. The perturbative cross sections therefore depend only very weakly on the

choice of the factorization scale. The difference between using a fixed factorization scale μ2
0

and performing the full DGLAP evolution at a scale μ2
f is of higher order in αs, and enters

through terms of order O(α2
s ln

2(μ2
f/μ

2
0)). However, if the scale μ2

f is close to the fixed scale

μ2
0 (such that ln(μ2

f/μ
2
0) � 1), these terms are small.
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We therefore decide to use a fixed value of the factorization scale of the order of the

average transverse jet energies in the dijet and the inclusive jet cross section μ2
f = μ2

0 =

200GeV2 � 〈E2
T 〉. It has been shown in Fig. 3.12 that the factorization scale dependence

of the dijet cross section is below 2% when varying this scale by a factor of four in both

directions.

It is customary to evaluate the inclusive ep cross sections at a factorization scale of the

order of the four-momentum transfer Q2. However, whereas the recent H1 measurements [32]

are performed over the large range 150 < Q2 < 30000GeV2, we restrict our QCD analysis

to a subset of these data in the range of 150 < Q2 < 1000GeV2 for which μ2
f = 200GeV2 is

a reasonable choice.

&��������������� �� ��� x�#�%�������

The parton distributions are functions of the parton momentum fraction x. Neither the

shape nor the amplitude of the x-dependence are predicted by perturbative QCD. To fit

these functions to the data we have to assume a functional form that can be parameterized

by a (small) number of parameters. The functional forms have to be chosen such that they

do not restrict the possible solutions. We will use different functional forms which were

already used in the global fits [29, 77, 30, 106]. The following parameterizations for the

parton densities are used in our analysis

3 parameters xP (x) = A xb (1− x)c , (8.8)

4 parameters xP (x) = A xb (1− x)c (1 + dx) ,

5 parameters (I) xP (x) = A xb (1− x)c (1 + dxe) ,

5 parameters (II) xP (x) = A xb (1− x)c (1 + d
√
x+ ex) ,

where xP (x) stands for xG(x) or xΔ(x). While the form of the parameterizations with three

and four parameters are unique there are two different forms for the five parameter ansatz.

8�� ���������� )	� ��� &�� %
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Any QCD analysis of a limited data set must address the question of how much external

information should be used. If the amount of external information is large one can expect

to obtain a higher precision of the results, but has to take into account that the analysis

results are not independent of the external information. The uncertainties of the external

information have to be appropriately propagated into the uncertainty of the result.

If one aims for a completely independent determination of all parameters, one has to

ensure that the available data are able to constrain all parameters simultaneously.

Different strategies shall be discussed which differ in the amount of external information

included in the analysis. We start with a simple one-parameter fit to determine αs(MZ) using
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the knowledge of parton distributions from global analyses. A more elaborate strategy will

aim at the determination of gluon and quark densities while αs(MZ) is taken to be the world

average value within its uncertainty. The third step will be the simultaneous determination

of αs(MZ), the gluon and the quark densities, relying on no external information at all.
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The technically simplest procedure is to reduce the QCD analysis to the fit of a single free

parameter (αs(MZ)) while maximizing the external input (the parton densities). Corre-

sponding analyses of jet data have been performed in ep collisions [3, 4, 5, 107, 108, 109]

and in p̄p collisions [110]. In this approach the parton distributions are assumed to be “well-

known” from independent measurements. In practice we will take the knowledge on the

parton distributions from the results of global analyses. This approach has several short-

comings, connected to the following three points.

❍ The Validity of the Assumption

In global analyses parton density functions are basically fitted to DIS structure function

data. These data are however only indirectly sensitive to the gluon density, and give

only constraints at small x where the scaling violations of the structure functions are

large. The gluon density at moderate x (to which our jet data are sensitive) is only

obtained from extrapolations and from additional constraints as e.g. momentum sum

rules. One can hardly consider this as “well-known”.

❍ Consistency of the Procedure

The second shortcoming of this method concerns the self consistency of the αs(MZ)

result. The parton distributions obtained in global fits depend on an initial assump-

tion on αs(MZ). The resulting value of αs(MZ) therefore also depends on this initial

assumption. If the result comes out different from the initial assumption the analysis

is inconsistent. Consistency is only achieved if the result is equal to the initial assump-

tion. Many recent global fits have therefore provided sets of parton distributions for

different assumptions on αs(MZ) [30, 77, 106]. Using these sets of parton distributions

the influence of the initial assumption on αs(MZ) can be tested.

❍ Propagation of Uncertainties

It is straightforward to propagate the experimental and theoretical uncertainties into

the αs(MZ) result. This is, however, not the case for the uncertainties connected to the

parton distributions. No global analysis has yet provided an error analysis of the fit

results. The uncertainty coming in from the parton distributions is usually estimated

by using the fit results from different groups (CTEQ, MRST, GRV). However, these

groups are using nearly the same data sets, and the fits are based on similar assump-

tions. The spread between these results (which are all “best fits”) does therefore not
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cover the range of possible variations and does not reflect the true uncertainty of the

parton distributions.

Only the CTEQ collaboration has performed a study [111] of the uncertainty in the

gluon distribution. The global analysis was repeated for different parameterizations of

the gluon density, allowing also the quality of the fits to degrade. Only extreme fits

were discarded that showed clear disagreement with one or more data sets. While this

study is a first step towards the estimation of uncertainties, it can still not replace a

proper error analysis.

The consequence for an αs(MZ) determination along these lines is that an important

part of the uncertainties, coming from insufficient knowledge of the parton densities, can

not be determined. It is highly questionable whether the parton distributions are really

“well-known” in the relevant x-range, especially when comparing their uncertainty to the

uncertainty of the world average value of αs(MZ). It seems to be more reasonable to take

external knowledge of parameters which are better known (i.e. αs(MZ)) from independent

processes and to fit those parameters which are less constrained by other data (i.e. the gluon

density). This approach will be discussed in the next subsection.

Although the present approach can not be seen as an independent αs determination, it

may still demonstrate consistency. The advantage of this approach is that all freedom in the

comparison of theory with data is absorbed into the value of the single parameter αs(MZ).

This allows to study the effects of different physical and technical assumptions in the QCD

fit and their influence on the result. The αs analysis in section 9.1 is based on this approach

and will be used to perform detailed studies.
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The value of αs(MZ) has been determined independently of the proton structure, for example

in jet production in e+e− annihilation [22, 112]. A determination of the parton densities in

the proton for a fixed value of αs(MZ) will therefore not lead to a circular argument as

discussed above for the αs analysis. The uncertainty of the world knowledge on αs(MZ)

is known (e.g. from the studies in [22]) and can be propagated into the uncertainty of the

resulting parton densities. This approach has been applied in previous determinations of the

gluon density in the proton from HERA jet data [113, 114, 115]. However, in these analyses

the quark content of the proton was fixed and taken from global analyses which leads to

similar conceptual problems as discussed above for the αs determination.

We will avoid such inconsistencies in our QCD analysis by fitting simultaneously the

gluon and quark densities. The fit is capable to constrain both if we include additional H1

data on the inclusive ep cross section in the fit because these data are directly sensitive to

the quark densities (see the next section)5.

5A similar approach has been followed in a previous analysis by G. Lobo [116].



8.4 Correlated Uncertainties between Data Points 155

>#)#) ��
�����
��� �
�
�
������� �� αs(MZ): �	
 ����� ��� �	


4���9 �
�����
�

The final aim of the present analysis is an independent, simultaneous fit of all free parameters,

αs(MZ), the gluon and the quark densities, without relying on any external assumptions.

Such a direct, simultaneous determination has never been attempted before using data from

a single experiment. This procedure is fully independent of any external input and can thus

provide new, independent information and demonstrate in which way the data are sensitive

to the single parameters and their correlation.

However, while the QCD fits in the two previous approaches are likely to converge, this

can not trivially be expected here. It remains to be checked whether the present jet data

are really able to constrain αs(MZ) and the gluon density simultaneously.
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Before we perform the QCD analysis according to the three strategies outlined above, we give

an overview of the different sources of correlated uncertainties (experimental and theoretical

ones). In table 8.1 all sources are listed with the information whether they are correlated

between both data sets. The correlations are taken into account in the definition of the χ2

variable as given in (B.16) in appendix B.

The single sources of experimental uncertainties for the jet cross sections have been dis-

cussed in section 6.3 and the uncertainties for the inclusive ep data are treated in [32]. The

theoretical uncertainties for the jet cross sections are evaluated as discussed in section 3.3 (the

renormalization and factorization scale dependence and the uncertainties in the hadroniza-

tion corrections). The scale dependence is used to estimate the possible size of higher order

corrections. Since higher order effects may be different for different processes, we assume

the renormalization scale dependences of the inclusive ep cross section and of the jet cross

sections to be uncorrelated.

Additional sources of uncertainties become relevant whenever external information is

included in the QCD analysis. In the cases where we set the value of the strong coupling

constant to the world average value αs(MZ) = 0.119 we assume an uncertainty of±0.004 [22].

Whenever the parton density functions are taken from global fit results we use the parame-

terization CTEQ5M [29] for the central analysis because it gives the best description of the

recent measurement of the inclusive ep cross section by the H1 collaboration [32]. The cor-

responding analysis steps are repeated using all parameterizations from other recent global

fits (including the gluon uncertainty study by the CTEQ collaboration [111]). Due to the

lack of a more realistic estimate we will quote the largest deviation from the central result

as the uncertainty.
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reduced inclusive jet
inclusive DIS and dijet

source of correlated uncertainties cross section cross section

experimental luminosity × ×
model dependence of detector correction ×
positron energy × ×
positron polar angle × ×
LAr cluster energy × ×
LAr noise ×
photoproduction background ×

theoretical renormalization scale (inclusive DIS) ×
renormalization scale (jets) ×
factorization scale (jets) ×
hadronization corrections ×

external αs(MZ) 0.119 ± 0.004

(if not fitted) parton density functions spread of recent global fits

Table 8.1: The different sources of uncertainties which are correlated between the different

data points.
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We have now compiled all information required to perform the QCD analysis.

❍ The results of the inclusive jet and the dijet cross sections have been presented in

chapter 7. The uncertainties and their correlations between the different data points

are discussed in section 6.3 and listed in appendix D.1.

❍ The data on the inclusive reduced ep cross section are taken from a recent H1 analy-

sis [32]. For these data all uncertainties and their correlations between different data

points are published. Since the jet analysis presented here is based on similar analysis

methods, the correlations of the uncertainties between both data sets are also known

(see section 8.4) and can be taken into account.

❍ Detailed investigations of the renormalization and factorization scale dependence of

the perturbative QCD predictions and the size and uncertainties of non-perturbative

corrections as predicted by different models have been performed in chapter 3 for the

jet cross sections. In section 3.3 we have discussed how the corresponding uncertainties,

which both contribute to the theoretical uncertainties of the fit results, are defined

In the fits the inclusive reduced ep cross section is directly compared to the perturbative

QCD predictions, while the jet cross sections are compared to the product of the perturbative

predictions and the non-perturbative (hadronization) corrections. The latter are taken to

be the average value from the model predictions of HERWIG, LEPTO and ARIADNE (the

values are listed in appendix D.1). Further tools needed in the QCD fit are presented in the

appendices:

❍ A method for the fast evaluation of the perturbative QCD predictions in next-to-

leading order (for the jet cross sections and for the inclusive reduced ep cross section)

needed in the iterative fitting procedure, is introduced in appendix C.

❍ In appendix B we introduce a definition of χ2 which takes into account the correlations

of uncertainties between the data points by fitting a parameter for each source of

uncertainty (formula (B.16)). Using this definition each fit takes into account the size

157
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and the correlations of all uncertainties of the data points and therefore returns the

values of the fit parameters with their total uncertainty. The individual uncertainty

components (experimental and theoretical) are evaluated according to the procedure

described in appendix B.5.

The perturbative QCD predictions are calculated in next-to-leading order in the MS scheme

using the program DISENT [60]. The free parameters in the fits are:

❍ The value of the strong coupling constant at the scale of the mass of the Z0 boson

(MZ = 91.187GeV [21]) which is evolved to the process relevant energy scales using

the numerical 4-loop solution (1.2) of the renormalization group equation.

❍ The gluon density and a linear combination of the quark densities (the sum over all

quark flavors, weighted with the squared electric charge). Their x dependence is pa-

rameterized using the formulae (8.9). The error bands are determined as described in

appendix B.5.

The results of the QCD fits are presented in the next sections, following the three strategies

outlined in section 8.3. In all cases we present the main result together with detailed studies

of the stability of the fit under variations of technical parameters and also the dependence

of the result on the choice of the data sets used in the fit.
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As a first step we fit the QCD predictions to the jet cross sections using parameterizations

for the parton distributions from global fits. The single free parameter which we determine

in the fit is the value of the strong coupling constant. All αs fit results presented hereafter

consider all experimental and theoretical uncertainties. The effect of uncertainties of the

parton distributions is discussed separately.

The central value of αs(MZ) is obtained from a fit to the double differential inclusive jet

cross section d2σjet/dETdQ
2, measured with the inclusive k⊥ algorithm. For this algorithm

the hadronization corrections are smallest (section 3.1). For the central result we use the

parton distributions from the CTEQ5M parameterization [29], the renormalization scale is

chosen to be μr = ET and the factorization scale is set to the fixed value of μf =
√
200GeV

(the average ET of the jet sample). The effect of choosing a different value for μr are studied.

The studies of the stability of the results include fits to the inclusive jet cross section

measured with the Aachen jet algorithm, fits to the double differential dijet cross section

d2σdijet/dETdQ
2 using four different jet algorithms and fits to other double differential dijet

distributions.
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Figure 9.1: Determination of αs from the inclusive jet cross section using the inclusive

k⊥ algorithm at a renormalization scale μr = ET . Displayed are the results of the fits to

the single data points in each Q2 region at each ET value (circles). The single values are

extrapolated to the Z0 mass (triangles). A combined fit yields a result for αs(MZ) (rightmost

triangle) for each Q2 region. The upper curves indicate the prediction of the renormalization

group equation for the energy evolution of the combined fit results and their uncertainties.
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Before carrying out combined fits to groups of data points we test the consistency of the data

by performing QCD fits separately to all sixteen single data points of the double differential

inclusive jet cross section. The fit results are displayed in Fig. 9.1 for the four regions of Q2.

In each fit we extract a result for αs(ET ) (circles) which is presented at the average ET of

the corresponding data point. The individual results are subsequently evolved to αs(MZ)

(triangles). Combined fits to all data points in the same Q2 regions are performed, leading
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to a combined result of αs(MZ) for each Q
2 region (rightmost triangles). The three upper

curves in the plots indicate the evolution of the combined result (dashed-dotted curve) and

its uncertainties (solid curves) according to the renormalization group equation. The single

αs(ET ) values are consistent with the predicted scale dependence of αs and all combined

αs(MZ) results are compatible with each other. The combined results of the Q2 regions are

(for μr = ET )

150 < Q2 < 200GeV2 : αs(MZ) = 0.1224 +0.0052
−0.0054 (exp.)

+0.0060
−0.0063 (th.) ,

200 < Q2 < 300GeV2 : αs(MZ) = 0.1201 +0.0043
−0.0044 (exp.)

+0.0052
−0.0057 (th.) ,

300 < Q2 < 600GeV2 : αs(MZ) = 0.1196 +0.0037
−0.0038 (exp.)

+0.0040
−0.0047 (th.) ,

600 < Q2 < 5000GeV2 : αs(MZ) = 0.1177 +0.0048
−0.0048 (exp.)

+0.0035
−0.0043 (th.) . (9.1)

While the experimental uncertainties are of the same size for all αs(MZ) values, the theo-

retical uncertainties shrink slightly towards larger Q2. This is a consequence of the reduced

renormalization scale dependence of the jet cross section at higher Q2 (shown in Fig. 3.10).
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Having convinced ourselves that our data are consistent over the whole range of Q2 and

ET we can now attempt to make combined fits to groups of data points. To study the ET

dependence of αs(ET ), we combine the four data points of the same ET at different Q2 and

extract four values of αs(ET ) (circles in Fig. 9.2). The single values are evolved to αs(MZ)

(triangles below). A combined fit to all 16 data points gives χ2/N.d.f. = 3.81/15 and leads

to the final result for αs(MZ) (rightmost triangle)

αs(MZ) = 0.1181 ± 0.0030 (exp.) +0.0039
−0.0046 (th.) (μr = ET ) . (9.2)

The upper curves in Fig. 9.2 indicate the prediction of the renormalization group equation for

the evolution of the final result and its uncertainties (the contribution from the uncertainty of

the parton distributions is discussed later). A detailed overview of the numerical values of the

results is given in appendix D.2. The contributions from the single sources of uncertainties to

the result (9.2) are listed in table D.1, and table D.2 gives the same information for the four

individual αs(ET ) values. The fitted values of the parameters of the correlated uncertainties

are listed in table D.7.

The largest contribution to the experimental uncertainty comes from the hadronic en-

ergy scale of the LAr calorimeter. The theoretical uncertainty comprises at equal parts of

the uncertainty of the hadronization corrections and the renormalization scale dependence.

The contribution from the renormalization scale dependence is ( +0.0025
−0.0034) (corresponding to a

variation by a factor of two around the choice μr = ET as described in section 3.3).

The result (9.2) is in good agreement with the current world average value of αs(MZ) =

0.119± 0.004 [22].
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Figure 9.2: Determination of αs from the inclusive jet cross section using the inclusive k⊥
algorithm for a renormalization scale μr = ET . The results are shown for each ET value

(circles). The single values are extrapolated to the Z0-mass (triangles). The final result for

αs(MZ) (rightmost triangle) is obtained in a combined fit. The upper curves indicate the

prediction of the renormalization group equation for the evolution of the combined fit result

and its uncertainty.
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Another possible choice of the renormalization scale in the theoretical calculation is the four-

momentum transfer Q. Analogous to the procedure applied in section 9.1.2 we perform an αs

determination for the renormalization scale μr = Q and obtain the results shown in Fig. 9.3.

In this case we combine the data points at the same Q but different ET and obtain four

single values of αs(Q) (circles) which we evolve to αs(MZ) (triangles below). A combined fit

to the 16 data points gives χ2/d.o.f. = 4.17/15 and a combined value of αs(MZ) (rightmost

triangle) of

αs(MZ) = 0.1221± 0.0034 (exp.) +0.0054
−0.0059 (th.) (μr = Q) . (9.3)

Comparing this result with the one obtained for μr = ET in (9.2), we note that the central

value is shifted by +0.0040 (the single contributions to the uncertainty are listed in table D.1).

In addition, we observe an increased theoretical uncertainty for the choice μr = Q which is
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Figure 9.3: Determination of αs from the inclusive jet cross section using the inclusive

k⊥ algorithm for a renormalization scale μr = Q. The results are shown for each Q value

(circles). The single values are extrapolated to the Z0-mass (triangles). A final result of

αs(MZ) (rightmost triangle) is obtained from a combined fit. The upper curves indicate the

prediction of the renormalization group equation for the evolution of the combined fit result

and its uncertainty.

directly connected to a stronger renormalization scale dependence of the perturbative NLO

calculation for μr = Q (compared to μr = ET ). The renormalization scale dependence gives

a contribution to the uncertainty of ( +0.0044
−0.0049) which can by itself account for the difference

between the two results.
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The need to use parton distributions determined in other processes by the global fits is the

strongest limitation of the approach chosen to determine αs.

In section 8.3 we have already discussed the problem of how to determine the uncertainties

of the parton distributions which then have to be propagated into the uncertainty of the αs

result. Furthermore we have addressed the question of the consistency of the whole approach

since the parton densities obtained in global fits already depend on an initial assumption on

αs(MZ).
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Figure 9.4: Dependence of the αs(MZ) fit result (for μr = ET ) on the parton distributions

used in the fit. The results are displayed as a function of the αs(MZ) value used in the global

fits of the parton distributions. The correlation is shown for a comprehensive collection of

different global fits.

The central fit results are obtained for the parton distributions from the CTEQ5M pa-

rameterization [29]. We redo the QCD fits using all parameterizations from recent global

fits which have been performed in next-to-leading logarithmic accuracy in the MS-scheme1.

These include all sets from the fits CTEQ5 [29], CTEQ4 [77], MRST99 [30], MRSR [117],

MRSAp [106] and the sets from the gluon uncertainty study [111] by the CTEQ collabo-

ration. The fits CTEQ4, MRST99 and MRSAp have provided sets of parton distributions

for different assumptions on αs(MZ). Using these sets of parton distributions, we study the

dependence of our results on the initially assumed αs(MZ).

The αs(MZ) results obtained for the different parton distributions are shown in Fig. 9.4

as a function of the αs(MZ) value used in the global fit. The range of the variations is small

and no significant correlation is seen. Using the default set from MRST99 we obtain nearly

the same result (αs(MZ) = 0.1179) as for CTEQ5M.

1The parameterization from GRV98 [31] could not be used since the charm and the bottom quark densities

are not provided in the code.
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Figure 9.5: Dependence of the αs(MZ) fit result on the αs(MZ) value used in the global

fits of the parton distributions, separately for each ET bin.

The largest deviations from the central result (9.2) are obtained with the MRSR3 pa-

rameterization (+0.0036) and for the set MRST99(g↓) (−0.0017). We quote this spread as

the corresponding uncertainty of our result which is then given by

αs(MZ) = 0.1181 ± 0.0030 (exp.) +0.0039
−0.0046 (th.)

+0.0036
−0.0017 (pdf) (μr = ET ) . (9.4)

The small dependence of our result on the αs(MZ) value used in the global fit is in contrast

with the observation made by the CDF Collaboration in an αs analysis of the high ET

inclusive jet cross section in p̄p collisions [110]. The CDF αs(MZ) result depends strongly on

the αs(MZ) assumption in the global fits. To investigate the origin of this deviating result

we study the correlation separately within the regions of different ET . We redo the fits of the

four αs(MZ) values in the four different ET regions in Fig. 9.2 using all parton distributions
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described above. The correlations of these results with the input αs(MZ) values are shown

in Fig. 9.5.

In both lower ET regions we observe the same behavior as in the combined fit: The

variations are small and not correlated with the input αs(MZ) value. At higher ET , however,

the range of the variations becomes larger. For the CTEQ4 series (filled squares) and for the

MRSAp series (open triangles) we observe a positive correlation between the αs(MZ) result

and the initial assumption. A different tendency is seen for the MRST99 series, where input

and output αs(MZ) values are clearly anti-correlated.

These (anti-)correlations are strongest in the highest ET region (30 < ET < 50GeV)

where also the absolute variation between the different parameterizations is largest. The

inclusive jet data in this ET range are sensitive to parton momentum fractions in the range

0.1 � x � 0.4 (see Fig. 3.6). The most likely explanation for this behavior in our opinion

is that in this region of high x the parton densities are only weakly constrained by the data

used in the global fits. Different assumptions in the fitting procedure may therefore lead to

large differences in the results of the global fits.

However, our data points at high ET have large statistical uncertainties and therefore

only a small influence on the combined αs(MZ) fit result. This is reflected in the weak

dependence of the combined fit result on the input αs(MZ) seen in Fig. 9.4.
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To test the stability of the central fit result we perform the same QCD fits to other jet distri-

butions. In the first variation we use again the double differential inclusive jet cross section

d2σjet/dETdQ
2, now measured using the Aachen jet algorithm. Following the exact same

procedure as described in section 9.1.2 we obtain the results shown in Fig. 9.6. Performing

the same variations of the parton distributions the result for the Aachen algorithm is

αs(MZ) = 0.1172 ± 0.0032 (exp.) +0.0046
−0.0053 (th.)

+0.0036
−0.0017 (pdf) (μr = ET ) , (9.5)

in perfect agreement with the result obtained for the inclusive k⊥ algorithm in (9.4).
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The analysis that we have performed for the inclusive jet cross section can also be made for

the dijet cross section. The dijet cross section has also been measured double differentially

as a function of Q2 and ET (the average transverse energy of the dijet system). In addition

to the inclusive k⊥ algorithm and the Aachen algorithm we have also used the exclusive k⊥
algorithm and the Cambridge algorithm for this measurement. Setting the renormalization

scale to μr = ET we have performed the same fits as for the inclusive jet cross section.

The corresponding fit results are displayed in Fig. 9.7 for the four different jet algorithms.
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Figure 9.6: Determination of αs from the inclusive jet cross section using the Aachen

algorithm for a renormalization scale μr = ET . The results are shown for each ET value

(circles). The single values are extrapolated to the Z0-mass (triangles). A final result for

αs(MZ) (rightmost triangle) is obtained from a combined fit. The upper curves indicate the

prediction of the renormalization group equation for the evolution of the combined fit result

and its uncertainty.

The combined results of these fits are directly compared to each other in Fig. 9.8 and the

numerical values are listed in table D.3 in the appendix.

All αs(MZ) results are in good agreement with each other. The results for both ex-

clusive jet algorithms have larger theoretical uncertainties due to the larger hadronization

corrections2. Only the result for the Cambridge algorithm is somewhat low compared to the

other jet algorithms (although still consistent within its uncertainties). For the Cambridge

algorithm, however, the hadronization corrections are large (between 10% and 25%) such

that the model estimates may not be reliable (see the related discussion in section 3.1).

2In section 3.3 we have motivated our assumption that the uncertainty is proportional to the estimated

size of the hadronization corrections.



9.1 Determination of αs(MZ) 167

0.09
0.1

0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2

0.21
0.22
0.23

10 10
2

ET  / GeV

α s

αs from dijet cross section
for CTEQ5M parton distributions

150 < Q2 < 5000 GeV2

αs(ET)   (determined)
αs(MZ)   (extrapolated)

inclusive k⊥ algo.

μr = ET

0.09
0.1

0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2

0.21
0.22
0.23

10 10
2

ET  / GeV

α s

αs from dijet cross section
for CTEQ5M parton distributions

150 < Q2 < 5000 GeV2

αs(ET)   (determined)
αs(MZ)   (extrapolated)

Aachen algo.

μr = ET

0.09
0.1

0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2

0.21
0.22
0.23

10 10
2

ET  / GeV

α s

αs from dijet cross section
for CTEQ5M parton distributions

150 < Q2 < 5000 GeV2

αs(ET)   (determined)
αs(MZ)   (extrapolated)

exclusive k⊥ algo.

μr = ET

0.09
0.1

0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2

0.21
0.22
0.23

10 10
2

ET  / GeV

α s

αs from dijet cross section
for CTEQ5M parton distributions

150 < Q2 < 5000 GeV2

αs(ET)   (determined)
αs(MZ)   (extrapolated)

Cambridge algo.

μr = ET

Figure 9.7: Determination of αs from the dijet cross section measured with four different

jet algorithms at a renormalization scale μr = ET . The results for αs(ET ) are obtained in

different ET regions (circles) and are subsequently evolved to the Z0 mass (triangles). A

combined fit yields2 a result for αs(MZ) (rightmost triangle).
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As a further consistency test we perform fits to the other dijet distributions measured using

the inclusive k⊥ algorithm. The αs(MZ) results from these fits are summarized in Fig. 9.9

and listed in table D.4. All results are seen to be consistent with each other deviating by

maximally +0.0037
−0.0008 from our central result (9.4).

+���! � #�9����� χ2 #�5������

The central αs(MZ) result in (9.4) is obtained in a fitting procedure by minimizing the

variable χ2 as defined in (B.16). Correlations between uncertainties are taken into account

by fitting corresponding parameters for each source. In appendix B we have given the reasons

why we prefer this definition for our purposes, one argument being the possibility of taking

into account the asymmetry of uncertainties.

We however wish to demonstrate that the results do not depend too strongly on the exact

definition. We have therefore repeated the fit using a χ2 definition based on the covariance

matrix as introduced in (B.11) and (B.15). Since this definition can only handle symmetric

uncertainties we redefine all uncertainties to be symmetric by taking the average of the

positive and the negative uncertainty. Repeating the procedure from section 9.1.2 we obtain

an αs(MZ) result of

αs(MZ) = 0.1184 ± 0.0031 (exp.) ± 0.0039 (th.) +0.0036
−0.0017 (pdf) (cov. matrix) , (9.6)
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Figure 9.9: The αs(MZ) results from the fits to different double differential dijet cross

sections measured with the inclusive k⊥ jet algorithm.

which is very close to the central result in (9.4). The uncertainties are also similar in size

(the experimental and the theoretical uncertainties are here symmetric by definition).
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We have performed various QCD fits in which we have extracted αs(MZ) from different

jet distributions measured using different jet algorithms. The main results displayed in

Figs. 9.8 and 9.9 are seen to be consistent with each other and with the current world

average value [22].

We do not consider an averaging of the different results to be meaningful. Correlations

are only known for the experimental, but not for the theoretical uncertainties. The renor-

malization scale dependence for example is assumed to be an estimate of the possible size of

higher order corrections. Since different jet definitions may have different higher order cor-

rections one can not make any assumptions on their correlations. Similar statements apply

to the uncertainty of the hadronization corrections, since the applicability of the hadroniza-

tion models (which are not matched to the NLO calculation; see section 3.3) may vary for

different jet algorithms.

We therefore prefer to quote the value obtained with the jet algorithm with the smallest

hadronization corrections, i.e. the inclusive k⊥ algorithm as the main result. We extract four

values of αs(ET ) for the four bins in ET which are found to be consistent with the running
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of αs as predicted by the renormalization group equation (Fig. 9.2). In a combined fit of all

data points we obtain the result

αs(MZ) = 0.1181 ± 0.0030 (exp.) +0.0039
−0.0046 (th.)

+0.0036
−0.0017 (pdf) (μr = ET ) . (9.7)

This result is extracted for a renormalization scale of μr = ET . The theoretical uncertainty

includes the effect of the variation between μr = 0.5ET and μr = 2ET . The choice of

μr = Q leads to an αs(MZ) result which is by +0.0040 higher. The renormalization scale

dependence of the result increases from +0.0025
−0.0034 (for μr = ET ) to +0.0044

−0.0049 (for μr = Q) such

that both results are still consistent. Because of the reduced scale dependence we consider

the perturbative calculation to be more reliable for μr = ET and therefore decide to quote

this as the main result of the analysis.

We may compare this result to the published results from earlier analyses performed in

dijet production in deep-inelastic scattering by the H1 and the ZEUS collaborations3:

ZEUS [5] : αs(MZ) = 0.117± 0.005(stat.) +0.004
−0.005(exp.) ± 0.007(th.) ,

H1 [3] : αs(MZ) = 0.117± 0.003(stat.) +0.009
−0.013(exp.&th.) + 0.006(jet algorithm) ,

H1 [4] : αs(MZ) = 0.118± 0.002(stat.) +0.007
−0.008(exp.)

+0.007
−0.006(th.) .

It is obvious that the present analysis is able to reduce the uncertainty of the result very

significantly. Progress has been made in the statistical, the experimental and the theoretical

contribution.

The main cause for the progress in all three contributions is the high statistics of the

H1 data taken in 1995-1997 (Lint = 33 pb−1 as compared to Lint � 7 pb−1 in the older

H1 analyses and Lint = 3.2 pb−1 for the ZEUS result). The reduction of the statistical

uncertainty to ±0.0007 (see table D.2) however, is only one aspect.

The high statistics available now has been used to improve the calibration of the hadronic

energy scale [32, 81] which helped to reduce the corresponding uncertainty. Furthermore

an improved jet definition (the previous analyses were all performed using the modified

JADE jet algorithm [46, 47]) and harder cuts on the transverse jet energies helped to reduce

experimental uncertainties (the model dependence of the detector correction) as well as

theoretical uncertainties (the size of the hadronization corrections).

A major advantage of the present analysis is the large variety of measured jet distributions

which confirm the stability of the fit results with respect to the choice of variables employed

for the QCD fits. This demonstrates the good overall agreement between theory and data

over a wide kinematic range.

3The H1 result [4] uses a different definition of the experimental uncertainties which includes the uncer-

tainties in the model estimates of the hadronization corrections as well as the uncertainties in the parton

distributions. In our analysis the former is included in the theoretical uncertainty and the latter is quoted

separately. In the estimate of the theoretical uncertainty of the ZEUS result the renormalization scale was

varied only in the range 0.63Q < μr < 1.41Q while the H1 analyses used 0.5Q < μr < 2Q (as we do

in our analysis). In contrast to the present analysis these earlier analyses did not take into account QED

corrections.
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In the second part of the QCD analysis we determine the gluon density xg(x) and the

charge weighted sum of the quark densities xΔ(x) = x
∑

i e
2
i (qi(x) + qi(x)) in the proton,

while fixing the value of the strong coupling constant to the current world average value

of αs(MZ) = 0.119 ± 0.004 [22]. The QCD predictions are fitted to the inclusive jet cross

section, to the dijet cross section and to recently published H1 data on the inclusive reduced

ep cross section σ̃(xBj, Q
2).

Our primary interest lies in the result for the gluon density to which the jet cross sections

are directly sensitive. The inclusive reduced ep cross section is only included to constrain

the quark densities from which we can determine the quark induced fraction of the jet cross

sections. This approach therefore allows a consistent determination of the gluon density in

the proton by considering the correlation with the quark densities.

For the reasons described in section 8.2.2 we perform the fit of xg(x) and xΔ(x) at a fixed

factorization scale of μf =
√
200GeV. This value is of the order of the average transverse

jet energies ET of the jet data and of the four-momentum transfer Q of the inclusive ep

data (to achieve this we use only the inclusive ep data within 150 < Q2 < 1000GeV2). The

small contributions of the quark singlet density xΣ(x) = x
∑

i(qi(x) + qi(x)) to the NLO

corrections of the jet cross sections are evaluated using the CTEQ5M parameterization4.

The renormalization scale is set to μr = Q for the inclusive ep cross section and to

μr = ET for the jet cross sections (we will also show the result for the choice μr = Q).
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For the central result we perform a fit to the inclusive ep cross section, to the inclusive jet

cross section d2σjet/dETdQ
2 and to the dijet cross section d2σdijet/dξdQ

2 (the latter measured

using the inclusive k⊥ algorithm). The gluon and the quark distributions are parameterized

according to the 4-parameter formula in (8.9). The fit yields χ2/d.o.f. = 61.16/105.

In Fig. 9.10 we present both the fitted gluon (left) and quark densities (right). The error

bands include all experimental and theoretical uncertainties as well as the uncertainty of

αs(MZ). The resulting parameters of the parton densities can be found in the tables D.5

and D.6 in the appendix D.2 together with the uncertainties of the parton densities at specific

x-values, corresponding to the error bands in Fig. 9.10. The fitted values of the parameters

4As described in section 8.2.2 the quark singlet does not contribute to the inclusive ep cross section

at next-to-leading order and contributes only marginally to the jet cross sections via the next-to-leading

order corrections (below 5% at Q2 = 150GeV2 and decreasing towards higher Q2). These contributions are

evaluated using the parameterization from CTEQ5M. We have verified that (due to the small size of these

contributions) all results are stable if we use other parameterizations. Using e.g. the parameterizations that

caused the largest changes in the αs results in the previous section (MRSR3 and MRST99(g↓)) leads to a

change in the gluon density below two per mil over the whole x-range and to a change of xΔ(x) below 0.1

per mil.
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Figure 9.10: The gluon density xg(x) (left) and the quark density xΔ(x) (right) in the

proton, determined in a combined QCD fit to the inclusive reduced ep cross section, the

inclusive jet cross section and the dijet cross section. The jet cross sections are measured

using the inclusive k⊥ jet algorithm. The error bands include the experimental and the

theoretical uncertainties as well as the uncertainty of αs(MZ).

for the correlated uncertainties are listed in table D.7.

In Fig. 9.10 the results for the gluon density and the quark density are compared to the

results from global analyses. For x � 0.02 the gluon result is very close to the parameteriza-

tions from CTEQ5M and MRST99. Only at smaller x-values our result is slightly larger (8%

at x = 0.01), but still compatible within its uncertainty. The fitted quark density, however,

differs significantly from the global fit results (which also differ from each other by the same

amount) and in addition shows a different x dependence.

The gluon density shown in Fig. 9.10 has an uncertainty of ≈ 18% over the whole x range.

However, some part of the uncertainty is anti-correlated between the values at different x. We

have therefore also determined the integral of the gluon density over the range 0.01 < x < 0.1

and obtain∫ 0.1

0.01

dx xG(x, μ2
f = 200GeV2) = 0.229 +0.034

−0.032(tot.) , (9.8)

= 0.229 +0.016
−0.015(exp.)

+0.019
−0.021(th.)

+0.022
−0.018(Δαs) ,

with a precision of ≈ 15%. This result means that (at μ2
f = 200GeV2) 23% of the proton

momentum is carried by gluons with a momentum fraction in the range 0.01 < x < 0.1.
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Figure 9.11: The dijet cross section measured double differentially as a function of Q2 and

the variables ξ (left) and xp (right) using the inclusive k⊥ algorithm. The data are compared

to the QCD predictions (including hadronization corrections) using the parton distributions

from the NLO QCD fit result (solid line) and the parameterizations from CTEQ5M (dashed

line) and MRST99 (dotted line).

This result is in good agreement with the results from global fits for which the integral has

the values

CTEQ5M: 0.226 , MRST99: 0.232 , GRV98HO: 0.235 . (9.9)

Using the fitted parton distributions (and αs(MZ) = 0.119) we compare the theoretical

calculations to two differential dijet cross sections (Fig. 9.11) and to the inclusive reduced

ep cross section (Fig. 9.12) within the Q2 range in which the fits are performed. For the

inclusive ep cross section we obtain a significantly improved description as compared to

the calculations using the CTEQ5M or MRST99 parameterizations. The corresponding

differences in the dijet distributions are almost imperceptible.
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recent global analyses (dashed and dotted lines).
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Figure 9.13: The fit results for the gluon density (left) and the quark density (right) for

different parameterizations of the x-dependence.
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To test the influence of the specific functional form of the parameterization on the fit results

we repeat the fits using the other parameterizations from (8.9). In Fig. 9.13 the corresponding

fit results are shown for the gluon density (left) and for the quark density (right). The fitted

gluon density does not change when we use the three-parameter formula or the first five-

parameter formula. Only for the second five-parameter formula the lowest x-region is slightly

reduced (by 8% at x = 0.01). For the quark density we obtain stable results with four or

more parameters while the three-parameter formula seems not to be flexible enough: The

fit result comes out very different and describes the data significantly worse (χ2/d.o.f. is

increased by 0.45!). We conclude that the four-parameter formula employed here is flexible

enough not to introduce any bias in the fit results.

As a further check we investigate whether the fit results change when subsets of the data

are excluded from the fitting procedure. For this purpose we repeat the fit excluding the

data above (or below) Q2 = 300GeV2. The results of these fits are shown in Fig. 9.14 for

the gluon density (left) and for the quark density (right) in comparison with the main result

(solid line). Although the uncertainties of these results (not shown here) are larger than the

result from the fit to the whole data set, their central values are in good agreement with the

main result. This demonstrates that the data are consistent over the whole Q2 range.
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Figure 9.14: The fit results for the gluon density (left) and the quark density (right) from

fits to subsets of the data sample.

To show that the quark density is completely determined by the inclusive reduced ep

cross section we perform a further fit in which the jet data are excluded. The result of this

fit is also shown in Fig. 9.14 (dashed-dotted line) and hardly distinguishable from the main

result.
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When the perturbative QCD calculations of the jet cross sections are performed at a renor-

malization scale μr = Q we obtain a slightly larger result for the gluon density as is shown

in Fig. 9.15 (left). The quark results (not shown here) are not influenced by this choice. The

effect of the increased gluon density is similar to the effect observed in the αs determination

(section 9.1.3). Since the perturbative predictions are slightly lower, the fitted parameters

tend to be correspondingly higher.

+��!� �� � #�9����� 3�� ��!������

The inclusive jet cross section and the dijet cross sections have also been measured using

the Aachen jet algorithm. Employing these distributions, we repeat the central fits from

section 9.2.1 (under otherwise unchanged conditions). The fit result for the gluon density

is displayed in Fig. 9.15 (right). No difference from the result obtained for the inclusive k⊥
algorithm is seen.
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So far we have only used the measurements performed with the inclusive jet definitions. The

exclusive jet definitions were only employed for measurements of the dijet cross section.

To investigate the influence of the jet algorithm on the results we repeat the combined fits

to the inclusive reduced ep cross section and to the two dijet cross sections d2σdijet/dETdQ
2

and d2σdijet/dξdQ
2 for all jet algorithms. The results for the gluon density from these fits are

displayed in Fig. 9.16 as error bands. The additional lines represent the results from further

fits to other dijet variables. Since different jet variables are in different ways sensitive to

the x-dependence of the parton densities we observe some deviations between the single fit

results which become larger towards x ≈ 0.01 where the data used are no longer sensitive.

For the inclusive jet algorithms (top) the deviations between the fits to different variables

are small compared to the size of the error band over the whole x range. The results for the

gluon density obtained with the exclusive jet algorithms (bottom) are slightly lower. For

these algorithms the deviations between the fits to the different variables are larger, but still

within the error bands.

A direct comparison of the combined fits for the different jet algorithms (the error bands

in Fig. 9.16) to our main result (from Fig. 9.10) is given in Fig. 9.17. All results are found to

be compatible and the variations of the single results are well contained in the quoted error

band.



178 Results of the QCD Analysis

0

2

4

6

8

10

10
-2

10
-1

x

x 
G

(x
)

0

2

4

6

8

10

10
-2

10
-1

incl. k⊥ algo combined fit

d2σdijet / d
⎯
ET dQ2

d2σdijet / dξ dQ2

single fits

d2σ / dξ dQ2

d2σ / d
⎯
ET dQ2

d2σ / dMjj dQ2

d2σ / dη’ d
⎯
ET

0

2

4

6

8

10

10
-2

10
-1

x

x 
G

(x
)

0

2

4

6

8

10

10
-2

10
-1

Aachen algo combined fit

d2σdijet / d
⎯
ET dQ2

d2σdijet / dξ dQ2

single fits

d2σ / dξ dQ2

d2σ / d
⎯
ET dQ2

d2σ / dMjj dQ2

d2σ / dη’ d
⎯
ET

0

2

4

6

8

10

10
-2

10
-1

x

x 
G

(x
)

0

2

4

6

8

10

10
-2

10
-1

excl. k⊥ algo combined fit

d2σdijet / d
⎯
ET dQ2

d2σdijet / dξ dQ2

single fits

d2σ / dξ dQ2

d2σ / d
⎯
ET dQ2

d2σ / dMjj dQ2

d2σ / dη’ d
⎯
ET

0

2

4

6

8

10

10
-2

10
-1

x

x 
G

(x
)

0

2

4

6

8

10

10
-2

10
-1

Cambridge algo combined fit

d2σdijet / d
⎯
ET dQ2

d2σdijet / dξ dQ2

single fits

d2σ / dξ dQ2

d2σ / d
⎯
ET dQ2

d2σ / dMjj dQ2

d2σ / dη’ d
⎯
ET

Figure 9.16: The gluon density xg(x) in the proton, determined in QCD fits to the in-

clusive reduced ep cross section and to the dijet cross section, measured using different jet

algorithms. The error bands include the experimental and the theoretical uncertainties and

the uncertainty of αs(MZ). Further fits to different distributions are performed of which only

the central values are shown.
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Figure 9.17: A comparison of the central fit result for the gluon density (error band) along

with the results of fits to the dijet distributions obtained using different jet algorithms (lines).
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Using the combined jet data from the inclusive jet and the dijet cross section and the H1

results from the inclusive reduced ep cross section we have performed a QCD fit to determine

the gluon density together with the quark densities in the proton at moderate momentum

fractions (0.01 < x < 0.1). We have shown that the results remain stable when using

different jet distributions and jet algorithms in the fits. The extracted gluon density is in

good agreement with the global fit results from CTEQ5M and MRST99.

Evaluating the jet cross sections at a renormalization scale of μr = Q (instead of μr = ET )

we obtain a result for the gluon density which is slightly larger (approx. 9% at 0.01 < x <

0.02), but still consistent with the global fit results within the uncertainty.
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In the previous two parts of the QCD analysis we have either determined αs(MZ) or the

gluon density while the respective other parameter was fixed and taken from external input

(world average or global fits). In the third step of the QCD analysis we will perform a

simultaneous fit of the gluon and the quark densities as well as αs(MZ).
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Figure 9.18: The correlation of the fit results for αs(MZ) and the gluon density at x = 0.02

determined in a simultaneous QCD fit to the inclusive reduced ep cross section, the inclusive

jet cross section and the dijet cross section. The jet cross sections are measured using the

inclusive k⊥ jet algorithm. The error ellipse includes the experimental and the theoretical

uncertainties.
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The central result is obtained in a fit to the data sets used already in the previous section,

the inclusive ep cross section, the inclusive jet cross section d2σjet/dETdQ
2 and the dijet

cross section d2σdijet/dξdQ
2 (the jet cross sections having been measured with the inclusive

k⊥ algorithm). The gluon and the quark distributions are parameterized according to the

4-parameter formula in (8.9). The simultaneous fit yields χ2/d.o.f. = 61.10/104 and a result

for the quark distributions identical to the one obtained in the fit with a constrained αs(MZ)

(section 9.2).

We display the result of this simultaneous fit as a correlation plot between αs(MZ) and

the gluon density evaluated at x = 0.02 (a value which is well contained in the range in which

our data are sensitive) in Fig. 9.18. The central fit result is indicated by the full marker

and the error ellipse is the contour along which the χ2 of the fit is by one larger than the

minimum (including experimental and theoretical uncertainties). The contour is of a narrow
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Figure 9.19: The correlation between the fit results for αs(MZ) and the gluon density

evaluated at x = 0.02. The results from fits to different subsets of the data sample (left) and

from fits to the data measured using different jet algorithms (right) are compared.

and prolate shape showing that our data are very sensitive to the product αs · xg(x) but do
not yet allow to determine both parameters simultaneously at such high precision.

Also included in Fig. 9.18 are the results from global fits. While no anti-correlation

between αs and the gluon density is seen in the CTEQ4 series, the MRST99 series shows

an anti-correlation which is smaller than the one seen in our fit result. Consistency between

our result and the global fits is only seen for sets of parton distributions extracted for

αs(MZ) � 0.117.
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To test the stability of the fit result we repeat the QCD fit using only data from specific

regions of Q2. In Fig. 9.19 (left) we show the central results from two fits in which we exclude

respectively the data at Q2 < 200GeV2 (rectangle) and those at Q2 > 600GeV2 (triangle).

Furthermore we perform a fit where the data obtained using the inclusive k⊥ algorithm

are replaced by the corresponding distributions measured using the Aachen algorithm. The

correlation plot of this result is represented in Fig. 9.19 (right) by an open marker and a

white error ellipse and compared to the central result.

The results of all these variations are consistent with the central result. Although the

values of αs(MZ) and xg(x) fluctuate slightly, the fit results lie always in the central region

of the contour.
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Figure 9.20: The correlation of the fit results for αs(MZ) and the gluon density at x = 0.02

determined in a QCD fit to the inclusive reduced ep cross section, the inclusive jet cross

section and the dijet cross section. The fit result for the choice μr = ET (shaded ellipse) for

the renormalization scale in the perturbative calculations of the jet cross sections is compared

to that for μr = Q.
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As we have done in the previous parts of the QCD analysis, we repeat this fit using a

renormalization scale μr = Q in the perturbative calculations of the jet cross sections. The

fit result is compared to the result obtained for μr = ET in Fig. 9.20. The fit result is

shifted to slightly higher values of αs · xg(x) in consistency with the observations made in

the previous fits (Figs. 9.3 and 9.15).
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We have used the jet cross sections measured at high four-momentum transfers Q2 and large

transverse jet energies ET to determine the free parameters of perturbative QCD calculations

to which the jet cross sections are directly sensitive, the strong coupling constant and the

gluon density in the proton.
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process experiment αs(MZ) theory

DIS – jets this analysis 0.1181 +0.0061
−0.0058 NLO

DIS – scaling violations CCFR [119] 0.119 ±0.0045 NLO
DIS – GLS sum rules CCFR [120] 0.114 +0.010

−0.012 NLO
e+e− – jets OPAL [121] 0.1187 +0.0034

−0.0019 NLO + resummed
e+e− – Γ(Z0 → had.) LEP combined [22] 0.122 ±0.005 NNLO
τ decays OPAL [122] 0.1219 ±0.0020 NNLO
τ decays ALEPH [123] 0.1202 ±0.0027 NNLO

world average [22] 0.119 ±0.004

Table 9.1: Comparison of the αs(MZ) result obtained in this analysis with results deter-

mined from other processes. The last column indicates the type of theoretical approximation

under which the results are extracted.
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Following a standard approach in which the gluon and the quark densities are taken from

the results of global fits, we have determined the strong coupling constant αs in a NLO

QCD fit to the inclusive jet cross section. Using a renormalization scale of μr = ET we have

extracted four values of αs(ET ) which are consistent with the running of αs as predicted by

the renormalization group equation. A combined fit yields the result

αs(MZ) = 0.1181 ± 0.0030 (exp.) +0.0039
−0.0046 (th.)

+0.0036
−0.0017 (pdf) (μr = ET ) .

The uncertainty is dominated by the theoretical contributions from the renormalization

scale dependence and the uncertainty of the hadronization corrections (the factorization

scale dependence is negligible).

In table 9.1 we have compared this result with other αs(MZ) results determined from

different processes (some values are still preliminary)5 and with the current world average

value. Our result is found to be consistent with the other results and competitive in precision.
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We have extracted the gluon and the quark densities in the proton in a NLO QCD fit to

the jet cross sections measured in this analysis and to a recent H1 measurement of the

inclusive reduced ep cross section [32] fixing αs(MZ) at the current world average value of

αs(MZ) = 0.119± 0.004 [22]. This direct determination yields a result for the gluon density

in a range of moderate momentum fractions 0.01 < x < 0.1 shown in Fig. 9.21 as a function

of x. The integral over this x range is found to be∫ 0.1

0.01

dx xG(x, μ2
f = 200GeV2) = 0.229 +0.034

−0.032 . (9.10)

5The selection of the results quoted here is arbitrary. A comprehensive overview can be found in [22, 21],

a detailed discussion of αs(MZ) determinations in deep-inelastic scattering is given in [118].
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Figure 9.21: A comparison of the gluon density determined in this analysis from jet data to

the preliminary H1 result from a fit to structure function data and to the results from recent

global analyses.

This result is in very good agreement with the results from recent global analyses (CTEQ5M,

MRST99, GRV98) which also include data sets with direct sensitivity to the gluon density

(prompt photon and jet data). At x > 0.02 the result is not consistent with the preliminary

H1 result from a fit to structure function data. This discrepancy is currently not understood.

It should, however, be mentioned that the determination of the gluon density from jet

cross sections is straightforward and transparent insofar as a change in the gluon density is

here directly related to a change in the theoretical predictions. In the H1 result obtained

from the fit to structure function data only it is not immediately clear which data points

(or which properties of the distributions) constrain the gluon density at moderate x with

the high precision reflected in the small error band. It seems to be more important to

understand why the H1 result is not compatible with the global fit results which also include

(parts of) the HERA structure function data and for which they obtain good χ2 values. The

discrepancy does not necessarily represent an inconsistency of the data but could also be

attributed to the fit procedure, which can have a significant effect especially in cases where

the data are not directly sensitive to the gluon density. This discussion is, however, beyond
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the scope of the present work. It should be mentioned again at this point that the present

analysis arrives at a best fit for the gluon density which is entirely consistent with the results

from global analyses (which include H1 structure function data, but not the jet cross sections

used here).

Another direct determination of the gluon density in the proton from D� production

in deep-inelastic scattering and in photoproduction has recently been published by the H1

collaboration [124]. The result was obtained at μ2
f = 25GeV2 in the range 0.001 < x < 0.04

with uncertainties significantly larger than those of the present analysis. A direct comparison

of both results is not possible since they have been extracted at different factorization scales.

The quark densities are determined at high precision and seen to be inconsistent with

the global fit results. Our result shows a stronger x-dependence in the range 0.01 < x < 0.1

and is 3.5% (6.5%) larger than the fit result from CTEQ5M (MRST99) at x = 0.01.
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In a final step we have performed a NLO QCD fit to the jet data and to the inclusive

reduced ep cross section for a simultaneous determination of αs(MZ), the gluon and the

quark densities. We have shown that the simultaneous determination of the gluon density

xg(x) and αs(MZ) is possible using the jet cross sections measured in this analysis. A stable

fit result is obtained and the central values of αs(MZ) and xg(x) are consistent with the

current world knowledge.

The anti-correlation between αs(MZ) and xg(x) is, however, large and our present jet data

are not yet sensitive to constrain both with a high precision. On the other hand, our data

give strong constraints on the product αs · xg(x) and will therefore have significant impact

if they are included in combined analyses together with other data sets with additional (and

different) sensitivity to αs and the gluon density.



186 Results of the QCD Analysis



������� ��
 (�	���5

We have used jet cross sections in deep-inelastic positron-proton collisions to perform tests of

Quantum Chromodynamics and to determine the strong coupling constant αs(MZ) and the

gluon density in the proton. The investigations presented in this thesis mark a significant

progress in the analysis of jet production in deep-inelastic scattering. Using the high available

statistics delivered by HERA in the years 1994–1997 a large variety of jet distributions has

been measured using different jet definitions. Over wide regions of phase space an excellent

agreement between theory and data is seen. The determination of theoretical parameters has

led to significantly improved results compared to previous work (extraction of αs(MZ)) as

well as to novel results (the first simultaneous determination of αs(MZ) and the gluon density

in the proton). We have demonstrated the consistency of the results from jet production in

deep-inelastic scattering with those obtained in other processes on a new quantitative level

which represents an important test of perturbative QCD.
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The analysis is based on data recorded by the H1 experiment at HERA in the years 1994–

1997 at a center-of-mass energy of
√
s = 300GeV, corresponding to an integrated luminosity

of Lint = 35 pb−1. Jet observables are measured in deep-inelastic scattering (DIS) in the

kinematic region of four-momentum transfers 10 < Q2 < 15 000GeV2 and transverse jet

energies 50 � E2
T � 2500GeV2 in the Breit frame using k⊥ and (for the first time in DIS)

angular ordered jet algorithms. The inclusive jet and the dijet cross sections are measured

double differentially, the latter for a comprehensive set of jet variables. Three-jet and four-

jet cross sections are measured single differentially and the internal structure of jets in dijet

production is investigated using jet shapes and subjet multiplicities.

Predictions of perturbative QCD in next-to-leading order (NLO) of αs are compared to

the inclusive jet and the dijet cross sections measured. Using parton density functions ob-

tained in global fits and the world average value of αs(MZ) we observe an excellent agreement

between theory and data for those jet observables for which non-perturbative corrections are

small (as estimated by phenomenological hadronization models) and the perturbative pre-

dictions are reliable (i.e. where NLO corrections are small).
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At small four-momentum transfers 10 < Q2 < 70GeV2 the NLO calculation can no longer

describe the size of the measured dijet cross section. In this kinematic region NLO corrections

are, however, large (up to a factor of two) and contributions from higher orders in αs can be

sizable.
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The QCD analysis is based on the inclusive jet and the dijet cross sections measured using the

inclusive k⊥ algorithm at large four-momentum transfers Q2 > 150GeV2 and on additional

data on the inclusive ep cross section from a recent measurement by the H1 collaboration.

Since both measurements are using similar experimental techniques the full correlations

between the uncertainties of all data points are taken into account in the fitting procedure.

In the first step we determine αs following a standard approach in which the gluon

and the quark densities are taken from the results of global fits. Four values of αs(ET ) are

extracted from the inclusive jet cross section at different scales μr = ET . The results are

consistent with the running of αs as predicted by the renormalization group equation. A

combined fit yields a result of

αs(MZ) = 0.1181 +0.0061
−0.0058 ,

which is compatible with the current world average value of αs(MZ)world = 0.119±0.004 and

has a significantly higher precision than earlier αs(MZ) results determined in jet production

in DIS.

In the second step we determine the gluon density in the proton in a consistent way, i.e.

simultaneously with the quark densities, assuming the world average value of αs(MZ). The

gluon and the quark densities are determined at a factorization scale μ2
f = 200GeV2 � 〈E2

T 〉
in the MS-scheme. The results are presented as a function of the momentum fraction x in the

range 0.01 < x < 0.1. The integral of the gluon density xG(x) in this x range is determined

as ∫ 0.1

0.01

dx xG(x, μ2
f = 200GeV2) = 0.229 +0.034

−0.032 .

This integral and also the x dependence of the distribution are in good agreement with the

results from global fits.

In the third step of the QCD analysis we make a simultaneous fit of αs(MZ), the gluon

and the quark densities avoiding any external input. We demonstrate that we obtain a

stable fit result for all of these parameters using the inclusive jet and the dijet cross sections,

together with the inclusive ep cross section. This analysis constitutes the first simultaneous,

direct determination of αs and the gluon density in the proton.
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The results are consistent with current world knowledge. The anti-correlation between

αs(MZ) and the gluon density is, however, large and we see that the present data are not yet

sensitive to constrain both with a high precision. On the other hand, our data give strong

constraints on the product αs · xG(x) and will therefore have significant impact if they are

included in combined analyses together with other data sets with additional (and different)

sensitivity regarding αs and xG(x).
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At present the uncertainties of the results from experimental and theoretical sources are of

similar size. Further improvement will therefore require progress on both. It is likely that

the large luminosities expected in the future will allow to perform extended studies resulting

in an improved calibration of the hadronic energy measurement which is currently the source

of the largest experimental uncertainty.

Considering that we can not expect a calculation of the next-to-next-to-leading order

corrections to the inclusive jet and the dijet cross sections to become available at a short

time scale, the question arises: “What theoretical progress can be obtained in the near

future?”.

At low Q2 a very large amount of high ET jet data is available at HERA. In this kinematic

region where E2
T � Q2 terms of ln

E2
T

Q2 become large and fixed order calculations in NLO are

no longer predictive. If theorists would provide resummed calculations (matched to the

NLO prediction) these data could be included in QCD analyses giving important additional

information on the gluon density.

In the present analysis we have presented the first measurement of the three jet cross

section in deep-inelastic scattering (together with A. Heister [96]). The luminosity upgrade

of the HERA machine will allow to measure this process in the future at larger transverse jet

energies with high statistics. An observable as the ratio of the three-jet cross section and the

dijet cross section will be well suited to determine αs(MZ) since this ratio is fairly insensitive

to the parton densities and experimental (and maybe also parts of the theoretical) uncer-

tainties are expected to cancel to a large extent. This analysis will require the availability

of NLO calculations of the three-jet cross section. A NLO calculation of the three-jet cross

section in p̄p collisions has recently been published [125]. The basic tools should therefore be

available to provide a corresponding calculation for DIS in the near future which will allow

a new generation of αs(MZ) determinations to be performed.
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In section 2.1 we have discussed the reasons why we chose to perform the jet finding on the

hadronic final state particles in the Breit frame1. The reconstruction of the boost vector

to the Breit frame requires the knowledge of the kinematic variables xBj and Q2, as well

as the direction of 
q. The latter is obtained from the azimuthal angle φe of the scattered

positron in the laboratory frame. To determine xBj and Q2 we can use any one of the

methods introduced in section 4.3. However, a bad reconstruction of the kinematic variables

can lead to a bias in the reconstruction of the boost vector and may therefore also bias the

measurement. In the following we describe the problem and demonstrate that the bias can

be reduced using an appropriate reconstruction method.
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Measurements of the inclusive DIS cross section are typically performed in bins of xBj andQ
2.

The main criterion for the choice of a specific reconstruction method is that the resolution

must be sufficient to allow a fine binning with small migrations between bins. In the analysis

of hadronic final states in the Breit frame the kinematic variables also define the boost vector

event by event. Here it is not sufficient to only achieve a resolution compatible with the size

of the chosen bins. It is also necessary to avoid introducing a bias in the final state properties

through a definition of the boost vector which is e.g. disturbed by real photon emissions.

The main reason to perform analyses in the Breit frame is the sensitivity to (soft and hard)

QCD processes coming in through the detection of transverse energy, relative to the z-axis

(given by the proton-photon direction). If this axis is badly reconstructed the energy flow

along the true z-axis receives a transverse component relative to the reconstructed z-axis

which is misinterpreted as the indication of an underlying QCD process. Especially events

in which photons, emitted collinear to the initial state positron, escape undetected through

the backward beam pipe, may introduce a systematic effect, depending on the kinematic

1The Breit frame is defined by 2xBj
p+ 
q = 
0, where xBj is the Bjorken scaling variable and 
p and 
q are

the momenta of the incoming proton and the virtual photon. The orientation in the x-y plane of the Breit

frame is chosen such that the scattered positron points in the positive x-direction (i.e. φe,Breit = 0◦).
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Figure A.1: The processes of eq → eq (top) and eg → eqq̄ (bottom) in the Breit frame in

Born approximation (left) and in the presence of QED corrections from real photon emissions

collinear to the initial state positron (right), when the boost vector to the Breit frame is

calculated from the scattered positron kinematics.

reconstruction method.

In Fig. A.1 we have displayed the topology of different types of events in the Breit frame

in the Born approximation (left) and in the presence of photon radiation collinear to the

initial state positron (right). The upper plots show the purely electromagnetic scattering

of the positron off a quark via photon exchange. In this process no QCD corrections are

involved and in the Born process (left) the quark is backscattered without any transverse

momentum component. The lower plots show a gluon induced process of O(αs) with an

outgoing quark-antiquark pair with finite transverse momenta. In the Born process these

are balanced in the x-y plane (left).

QED corrections from photon radiation may lead to a quantitative change of this picture.

On the right hand side of Fig. A.1 the same processes as on the left are displayed with an

additional photon radiated collinear to the initial state positron (i.e. in the x-z plane). If

the boost vector is reconstructed from the scattered positron the virtual photon does not

lie on the z-axis, and the final state momenta are no longer balanced in the x-y plane. By

definition only the x-component of the final state momenta is affected while the y-component

is unchanged2. This increases the energy flow along the negative x-direction, leading to a

different bias for different observables.

Jets at large transverse energies ET, jet are typically produced in pairs of similar ET, jet.

In genuine dijet events the single ET, jet may be wrongly reconstructed, but the sum is stable

2Of course, also the z-momenta may be altered, but since all observables studied in this analysis are

invariant under longitudinal boosts along the z-direction we will not discuss this aspect here.
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with respect to a common shift along the x-direction. Furthermore we do not have to worry

that event topologies as displayed in the upper right plot of Fig. A.1 give contributions to

the cross section, since they contain only a single jet. A dijet analysis should therefore be

less sensitive to such processes.

This situation is different for inclusive final state analyses as in the measurement of the

transverse energy flow or for event shape variables, where (by definition) the observable

receives contributions from all events. In such cases special care has to be taken, as we

will demonstrate here for the case of the inclusive jet cross section. If the error in the

reconstruction of the boost vector is large enough, topologies as in the upper right plot in

Fig. A.1 may be mistaken for single high ET jets, leading to large radiative QED corrections

in the inclusive jet cross section.
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We study the dependence of the boost on the kinematic reconstruction by investigating the

transverse momentum components of the final state in the Breit frame. When the positron

is excluded, the total transverse momentum should be exactly zero. Some mismeasure-

ments (e.g. particle energies in crack regions) and the detector acceptance (e.g. the beam

pipes) will lead to fluctuations which should be similar for the x- and the y-component. A

wrong reconstruction of the boost vector is, however, likely to have an increased influence on

the component corresponding to the scattered positron direction i.e. the x-component (see

Fig. A.1).

In Fig. A.2 we show distributions of the reconstructed momentum components px,Breit

(left) and py,Breit (right) for the inclusive DIS sample (top), the inclusive jet sample (center)

and the dijet sample (bottom). The boost vector is reconstructed using either the Electron

Method (open circles) or the Electron-Sigma Method (full circles). The py,Breit distribution

is in all cases narrow and symmetric around zero. The width is approximately the same for

both reconstruction methods.

The px,Breit distribution is in all cases broader than the py,Breit distribution and shows a

tail towards negative px,Breit. For the inclusive DIS sample and for the inclusive jet sample

this tail is larger for the Electron Method than for the Electron-Sigma Method. In the

inclusive jet sample an excess of jets is seen at px,Breit < −7GeV. In this region configurations

as the one in the upper right plot in Fig. A.1 are accepted by the inclusive jet selection. Only

for the dijet sample both reconstruction methods give similar results. This is consistent with

our expectation that the reconstruction of dijet events is less sensitive to photon radiation

processes.

To demonstrate that the effects discussed here are truly related to collinear photon ra-

diation, we remove the cut on
∑

(E − pz) introduced in (5.5) and thus include events with

high energetic collinear photon radiation. The distributions for the Electron Method with

(full circles) and without this cut (open circles) are compared in Fig. A.3. As expected we
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Figure A.2: The distribution of the hadronic final state momentum in the Breit frame.

The boost vector is calculated using either the Electron-Sigma Method (full marker) or the

Electron Method (open marker). Shown are the components parallel (px,Breit, left) and

transverse (py,Breit, right) to the plane spanned by the incoming and the scattered positron.

All analysis cuts are applied, including the cut on
∑

(E − pz) (see section 5.1.3).
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Figure A.3: The distribution of the hadronic final state momentum in the Breit frame. The

boost vector is calculated using the Electron Method with (full marker) and without a cut on∑
(E − pz) (open marker). Shown are the components parallel (px,Breit, left) and transverse

(py,Breit, right) to the plane spanned by the incoming and the scattered positron.
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observe a further increase of the tail towards negative px,Breit.

It has to be noted that in all distributions shown in Figs. A.2 and A.3 the simulation

describes all observed effects well. This gives confidence that the implementation of the

QED corrections in HERACLES (interfaced to LEPTO and ARIADNE by DJANGO) is

reliable and that the remaining effects are therefore appropriately taken into account in the

correction procedure.
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We have demonstrated the importance of controlling the boost in analyses in the Breit frame

to avoid biases in the observables. While these biases can be small for high ET dijet cross

sections3 they can have large effects for inclusive analyses of the final state in the Breit frame.

Although for the Electron Method a hard cut on
∑

(E − pz) can reduce this bias, a further

improvement is obtained by using the Electron-Sigma Method for the reconstruction of the

kinematic variables.

3This is, of course, only true if the basic dijet selection criterion is not too sensitive to the potential shift

in the transverse jet energies, as in the case of a cut on the sum of the transverse jet energies or on the

invariant dijet mass.
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A theory which predicts events in the real world may still depend on parameters not predicted

by the theory itself. Such parameters can be determined in a statistical analysis by fitting the

theoretical predictions to measured data. Any result obtained in a fitting procedure to a set

of data points with different uncertainties will depend on the statistical assumptions made

in the fit, as for example on the way the information of the single data points is weighted

and how point-to-point correlations between different observables are treated.

In this appendix we will introduce methods which are needed in such fits. The cen-

tral point is to define a measure of disagreement between data and theory, the so-called

χ2 variable. Two standard methods are shown to give statistically unreasonable results.

Two further approaches are discussed which have both satisfying properties. Both allow to

consider point-to-point correlations in a consistent way.

2�� ��� ��	#�#����� 0	+��

We start by assuming a theory which is able to describe (parts of) the real world, if some

parameters 
p were known. If this is the case, these parameters 
p can be determined as those

for which the theoretical predictions Ti(
p) for a set of observables i are in agreement with

the true values of these observables Mi in the real world

Mi = Ti(
p) ∀ i . (B.1)

 1%��������� 
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In practice the true values Mi of the observables are not known. Any experimental mea-

surement can only provide an estimate mi of the true value, together with estimates of the

relative uncertainties Δm±
i,k (from different sources k) inherent in the measurement1. If the

1The uncertainty Δm±
i,k from source k is not necessarily distributed symmetrically around the central

value. In general the upper uncertainty Δm+
i,k can be different from the lower uncertainty Δm−

i,k. This is

indicated by the “±” signs in Δm±
i,k.

197
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uncertainties are assumed to obey a Gaussian distribution the relation between the true

value Mi and the estimate mi is given by

Mi = mi

(
1 +

Nexp∑
k=1

δi,k(εk)

)
, (B.2)

where the sum runs over all sources of experimental uncertainties. The εk are independent

random variables which follow a Gaussian distribution with zero average and unity dispersion

〈εk〉 = 0 , 〈ε2k〉 − 〈εk〉2 = 1 . (B.3)

The δi,k(εk) are defined such that they vanish for εk = 0 and represent the Δm±
i,kfor εk = ±1

δi,k(εk = 0) ≡ 0 , δi,k(εk = +1) ≡ Δm+
i,k , δi,k(εk = −1) ≡ Δm−

i,k . (B.4)

In the simplest case of symmetric uncertainties (i.e. Δmi,k ≡ Δm+
i,k = −Δm−

i,k) the functional

form is given by

δi,k(εk) = εk Δmi,k . (B.5)

For asymmetric uncertainties the functional form can be approximated by a second order

polynomial

δi,k(εk) = εk
Δm+

i,k −Δm−
i,k

2
+ ε2k

Δm+
i,k +Δm−

i,k

2
. (B.6)
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Often also the predictions of the theory Ti(
p) are not exactly known. This is for example the

case when perturbative expansions are truncated and only some of the leading orders are

calculated or when non-perturbative contributions are approximated by phenomenological

models. The approximations ti(
p) represent the true predictions of the theory only within

the relative uncertainties Δt±i,k (here the index k labels different sources of theoretical uncer-

tainties which represent the deviations from the true value)2. These theoretical uncertainties

can be modeled in the same way as the experimental ones, with further Gaussian random

variables εk

Ti(
p) = ti(
p)

(
1 −

Ntheo∑
k=1

δi,k(εk)

)
, (B.7)

2In general it is, of course, not possible to determine these theoretical uncertainties — if the deviations

could be calculated they would have been used to improve the theoretical approximation. However, in

chapter 3 we have described some methods to obtain estimates of the possible size of higher order corrections

in perturbative QCD calculations as well as uncertainties in the estimates of the hadronization corrections.

For simplicity we neglect here that the relative uncertainties Δti may also depend on the parameters 
p.

This approximation is reasonable when the expected dependence is much smaller than the uncertainty in

the determination of the Δti.



B.2 Definitions of χ2 199

with

δi,k(εk = 0) ≡ 0 , δi,k(εk = +1) ≡ −Δt+i,k , δi,k(εk = −1) ≡ −Δt−i,k . (B.8)

This definition is analogous to the experimental uncertainties in (B.2), except for the sign

of the δi,k so that the error variables appear with the same sign in the following formulae.

Inserting (B.2) and (B.7) in (B.1) we obtain the final formula3

mi = ti(
p)

(
1−

Nexp+Ntheo∑
k=1

δi,k(εk)

)
. (B.9)

�����	�

It has been pointed out [126] that the assumption of a Gaussian distribution of the error is not

necessarily justified for experimental uncertainties (e.g. the model dependence of a detector

correction factor). It is often found that the probability for the actual error to be many

standard deviations is small, but much larger than indicated by a Gaussian distribution.

The assumption of that theoretical uncertainties follow a Gaussian distribution is even more

problematic, especially since these are only very rough estimates anyway. However, when no

better knowledge on the distributions of the uncertainties is available, we consider (B.9) as

a reasonable model. Furthermore (B.9) demonstrates the necessity to consider correlations

of both, experimental and theoretical uncertainties in a statistical data analysis.

2�� ��(
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Starting from (B.9), we define the best estimate for the parameters 
p as the one for which

the ti(
p) show the best agreement with the corresponding mi considering the presence of the

uncertainties δi,k. Therefore a quantitative measure χ2 of the disagreement has to be intro-

duced. The parameters 
p are determined such that the χ2 is minimized. If the uncertainties

δi,k from all sources k are uncorrelated between the single observables i, χ2 can be defined

by

χ2(
p) =
∑
i

(mi − ti(
p))
2

δ2i,uncorr
, (B.10)

where the sum runs over all measurements i and δi,uncorr is the quadratic sum of all (uncor-

related) experimental and theoretical uncertainties. Unfortunately in most practical cases

we have to deal with uncertainties which are correlated between different data points (e.g.

overall normalization uncertainties). In such cases the simple formula (B.10) can not be

used.

3For the experimental uncertainties we have replaced (1 +
∑

δ) by (1 −∑ δ)−1 and we neglect terms

proportional to δi,k · δi,l. These are valid approximations if the δ are small.
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A standard method to consider the correlation between uncertainties, is to perform a series

of independent fits. At the first stage of the statistical analysis the correlated uncertainties

are ignored and a fit is performed using (B.10) where only the uncorrelated uncertainties

are considered. This yields the central result of 
p. To evaluate the uncertainty of 
p the fit

is then repeated for the data points shifted by one standard deviation of each correlated

uncertainty upwards and downwards. All changes of the parameters 
p with respect to their

central result are added in quadrature to obtain the total uncertainty. In this method the

asymmetry of uncertainties is naturally taken into account.

Since in each of the single fits only the uncorrelated uncertainties are considered, a data

point with small uncorrelated uncertainties (but large correlated ones) has a larger impact

in the determination of the central value, compared to a point with larger uncorrelated and

smaller correlated uncertainties. As demonstrated in example No.1 in section B.3 this may

lead to unreasonable fit results.

*#"#" 6���� �	
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A standard approach to fit correlated data includes the covariance matrix Cij in the definition

of χ2. Equation (B.10) is then modified to

χ2(
p) =
∑
ij

(mi − ti(
p))
(
C−1

)
ij

(mj − tj(
p)) . (B.11)

In this formulation χ2 also receives contributions from the non-diagonal elements of Cij

which carry the information on the point-to-point correlations of the data. However, the

definition of the covariance matrix is not unique and different definitions may lead to different

results of 
p in the χ2 minimization procedure. The ambiguity arises from the freedom in the

interpretation of the nature of the relative uncertainties δi,k.

One possibility is their interpretation as relative uncertainties of the measured data.

Another way of viewing the problem is that e.g. in a counting experiment there is no uncer-

tainty on the counted number of events. The uncertainty is only present in the expectation,

which in this case also involves experimental uncertainties due to the limited knowledge of

the measuring device or the uncertainty in the luminosity measurement. Although these

approaches sound very similar (and (B.9) is symmetric between theory and data) both may

lead to different results. This has been shown to be an artifact of the linearization upon

which the error propagation is based [127].

In the following we show that an attempt, based on the symmetry between measurement

and expectation as in (B.9) gives satisfying results.
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In the first approach [127] the absolute uncertainties are obtained by multiplying the relative

uncertainties δi,k (= Δmi,k, Δti,k) by the measured values mi. As in all definitions of the co-

variance matrix presented here, it is not possible to consider the asymmetry of uncertainties.

The δi,k are therefore taken as the average uncertainties

δi,k = Δmi,k =
Δm+

i,k −Δm−
i,k

2
, and δi,k = Δti,k =

Δt+i,k −Δt−i,k
2

. (B.12)

The covariance matrix is then given by

Cij =
∑
k

δi,kmi δj,kmj . (B.13)

The covariance matrix is calculated once, at the beginning of the χ2 minimization procedure.

It has been shown [127] that this definition can lead to a bias of fit results such that the

produced results are lower than expected. This is demonstrated in example No.2 in section

B.3.

-�$������� �����1 ���� ��� &����������

In the second approach [128] the absolute uncertainties are obtained by multiplying the

relative uncertainties δi,k by the theoretical predictions ti(
p), leading to

Cij =
∑
k

δi,k ti(
p) δj,k tj(
p) . (B.14)

Because the covariance matrix depends now implicitly on the parameters 
p it has to be

recalculated in each iteration of the minimization procedure when the parameters are varied.

It turns out that the bias discussed in [127] for (B.13) is only “mirrored” for this definition.

In those cases where definition (B.13) produces too low results, this definition produces

results larger than expected (example No.2 in section B.3).

-�$������� �����1 ���� �$���!��

Based on the symmetry between the measurement and the theoretical expectation in (B.9)

we propose to use the average of both to obtain the absolute values of the uncertainties that

enter the covariance matrix

Cij =
∑
k

δi,k
(mi + ti(
p))

2
δj,k

(mj + tj(
p))

2
. (B.15)

As in (B.14) the covariance matrix depends implicitly on the parameters 
p and therefore has

to be recalculated in each iteration of the minimization procedure. Example No.2 in section
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B.3 shows that definition (B.15) is not affected by the problems encountered in (B.13) and

(B.14).

Therefore we consider this third approach as a reasonable solution that may be used in

statistical data analysis. However, since it does not consider the asymmetry of uncertainties,

we will only use it to cross-check the results that we obtain by using the most flexible method,

which is presented in the following.
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A further approach to define χ2 has been proposed in [129, 27]. Based on the formulation

in (B.9) the Gaussian random variables εk are considered as parameters in the fit. The εk
dependence of the δi,k(εk) is parameterized as in (B.6). Since the εk are known to obey a

Gaussian distribution, their values are added in quadrature to the χ2. Uncorrelated uncer-

tainties are taken into account as in the simple formulation of χ2 in (B.10). The χ2 that is

minimized during the fit is defined by

χ2(
p,
ε) =
∑
i

(mi − ti(
p) [1−
∑

k δi,k(εk)])
2

δ2i,uncorr
+
∑
k

ε2k , (B.16)

where i runs over all measurements and k runs over all sources of uncertainties. The vector 
ε

contains all εk. The εk are not free parameters in the fit, since they are determined according

to the Gaussian law hypothesis, and give contributions to the total χ2. Correspondingly the

εk do not decrease the degrees of freedom of the fit. The definition of χ2 of (B.16) allows to

consider the asymmetry of uncertainties and is used throughout the statistical data analysis

in the present work. The functional form of the δi,k(εk) is always taken from (B.6).

2�� .6������

To demonstrate the weak points in some of the methods mentioned above we briefly discuss

two examples of making a combined fit of two αs(MZ) values. Each αs(MZ) has some

uncorrelated uncertainty and some uncertainty which is correlated between both values. The

two examples are shown in Table B.1 including the results according to the five different fit

methods discussed above.

 1��%�� =

In the first example one of the αs(MZ) values (a) has a considerably smaller uncorrelated, but

a larger correlated uncertainty than the second value. This is a typical situation that appears

in the present jet analysis: we have high statistics (i.e. small uncorrelated uncertainties) of

events with relatively small ET for which the theoretical predictions are less safe (i.e. have

larger correlated uncertainties).
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All methods which consider point-to-point correlations agree in their central values and

in the uncertainties of the combined results. The central value is close to the more precise

value b. The fact that it is slightly higher is a direct consequence of the presence of a positive

correlation in the uncertainties.

Only the method of independent variations of systematic parameters gives a result signifi-

cantly lower with an uncertainty that is much larger than the results from the other methods.

This is a consequence of neglecting the correlated uncertainties in the single fits. Each fit

is pulled towards the value a due to its larger impact on the single fits, and the uncertainty

of the result only reflects the uncertainty of this value. In this case the uncertainty of the

result is even larger than the uncertainty of the more precise single measurement b.

This is in clear contradiction to what we expect from a proper statistical analysis: and

increased amount of information must not decrease the total information. This method is

therefore unreasonable for a statistical data analysis.

 1��%�� /

The second example is similar to the one discussed in [127]. We have two αs(MZ) values

with the same uncertainty. Both values are in some disagreement: they are not compatible

within their uncorrelated uncertainties, and the correlated uncertainty can not account for

the difference. In this case the three methods of “independent variation of systematic pa-

rameters”, “covariance matrix from averages” and “fitting systematic parameters” give the

same results for the central value and for the uncertainty. As expected from the symmetry

of the input αs(MZ) values the final result is in between both values for these methods.

The two other methods, based on the covariance matrix as determined from the data

or from the prediction, show the curious effect of producing a significantly lower or higher

result than expected. Their disagreement points to a problem related to limitations in the

formalism of the error propagation (see [127] for a detailed discussion).

We conclude that the methods of “fitting systematic parameters” and using “the co-

variance matrix based on averages” are reasonable for a statistical data analysis. Since

example No.1 example No.2

a: αs(MZ) = 0.120± 2%(uncorr.)± 5% (corr.) 0.120± 2%(uncorr.)± 10% (corr.)
b: αs(MZ) = 0.110± 0.2%(uncorr.)± 20% (corr.) 0.110± 2%(uncorr.)± 10% (corr.)

χ2 definition by: fitted αs(MZ) value:
independent variations 0.1101± 0.0022+0.0273

−0.0183 0.1146± 0.0016+0.0127
−0.0104

cov. matrix (data) 0.1235± 0.0033 0.1047± 0.0111

cov. matrix (theory) 0.1231± 0.0033 0.1261± 0.0133

cov. matrix (average) 0.1233± 0.0033 0.1149± 0.0119

fitting syst. parameters 0.1231± 0.0032 0.1146± 0.0116

Table B.1: Two examples of fits to two αs(MZ) values whose uncertainties are partially

correlated. Shown are the results for all of the fit methods as described in the text.
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the former is able to consider asymmetries of uncertainties this is the method of choice in

this analysis. The latter method is used to cross-check the result and to demonstrate its

independence of the precise formulation of χ2.

2�' ��� χ2 0�
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The minimization of the χ2(
p,
ε) with respect to the parameters 
p and 
ε is performed by the

program MINUIT [130]. The algorithm is based on Newton’s minimization method. In the

one dimensional case the minimum of the function χ2(p) with respect to the parameter p is

found in iterations

pn+1 = pn +Δp with Δp =

∂χ2(p)
∂p

∂2χ2(p)
∂p2

|pn . (B.17)

In the multidimensional case the second derivative is replaced by the matrix of second deriva-

tives (Hessian) as e.g. implemented in the MIGRAD and HESSE procedures. The inverse of

this matrix is returned as the error matrix by MIGRAD. The errors on the single parameters

are the square roots of the diagonal elements of this matrix, which take into account all pa-

rameter correlations, but neglect non-linearities. Since these errors are estimated using the

curvature at the minimum, assuming a parabolic shape, they are by definition symmetric.

For the determination of the exact (an in general asymmetric) errors on fit parameters

(i.e. taking into account non-linearities) the MINOS algorithm is used. MINOS determines

the error of a parameter pn (corresponding to one standard deviation) by varying pn, each

time minimizing χ2 with respect to all other parameters, to find numerically the two values

of pn where χ2 is increased by one. Analogously the correlation of the errors between two fit

parameters can be visualized by the contour in the two-parameter space where χ2 (minimized

with respect to all other parameters) is increased by one. Both of these options will be used

in this work.
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The free parameters in the QCD fits that we perform in chapter 9 are the parton density

functions and the value of the strong coupling constant. The strong coupling constant can

directly be inserted as a fit parameter, such that the fit will directly provide its error.

To fit the x-dependence of the parton densities we use one of the functional forms from

(8.9). We are, however, not interested in the values and the uncertainties of the fit parameters

(A, b, c, · · ·), but directly in the value of e.g. the gluon density xG(x) and its uncertainty at

a specific value x0. We therefore replace the parameter A by the value of the gluon density
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x0G(x0) by rewriting formulae (8.9). The four parameter formula is then given by

xG(x) = Axb (1− x)c (1 + d x) ⇒ xG(x) = x0G(x0)
xb (1− x)c (1 + d x)

xb0 (1− x0)c (1 + d x0)
. (B.18)

In this case the MINOS algorithm will directly return the value of x0G(x0) as a result,

including its error. By repeating the fits at different values of x0 we are able to produce an

error band of the gluon density over the entire x-range.

In another part of the analysis we want to determine the integral I over a specific range

x1 < x < x2 of the gluon density

I ≡
∫ x2

x1

dx xG(x) =

∫ x2

x1

dx Axb (1− x)c (1 + d x) . (B.19)

Replacing the parameter A by the value of I we obtain the formula

xG(x) = I
xb (1− x)c (1 + d x)∫ x2

x1
dx xb (1− x)c (1 + d x)

, (B.20)

where I is a fit parameter whose error can be calculated by MINOS.
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Using the χ2 definition from (B.16) each fit has the knowledge of all sources of uncertainties

which are then reflected in the errors of the corresponding fit results. Within this approach

it is not directly possible to disentangle the contributions from the different sources of un-

certainties.

It is nevertheless interesting to know which sources give the largest contributions to

the total error. For this purpose we redo the fits excluding source by source (or groups of

sources). On one hand this may lead to different central values of our results, since the

single data points enter the χ2 formula now with a different weight. This new central result

has no further meaning. On the other hand we also obtain a different, reduced error of the

fit result. We define the uncertainty contribution from the corresponding source to be the

square root of the difference of the total and the reduced errors squared.

In some cases the uncertainty contribution assigned in this procedure to a specific source

may depend on the order in which the sources are excluded and is therefore not well defined.

However, the total uncertainty is always well defined.

To have a unique treatment within the present analysis we always start to exclude the

theoretical uncertainties (in the order: factorization scale dependence, renormalization scale

dependence, uncertainties of the hadronization corrections). The remaining uncertainty

is purely experimental and from the difference to the total uncertainty we calculate the

theoretical contribution as discussed above.

The order in which the experimental sources of uncertainties are then excluded can be

seen in table D.1 (from bottom to top).
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In the QCD fits the free parameters are determined in an iterative minimization procedure

of a suitably defined χ2 function. This requires the iterative calculation of perturbative

cross sections in next-to-leading order (NLO) for varying values of αs(MZ) and changing

parameterizations of the parton density functions. The number of iterations needed will

among other things depend on the number of parameters in the fit and is of the order of

several thousands for the fits performed in chapter 9. The standard way of calculating NLO

jet cross sections using the existing programs takes computing time of about one day (with

still not too high precision) and is therefore not suitable for fast iterative calculations.

In this appendix we introduce a flexible method for a very fast numerical evaluation

of arbitrary cross sections in NLO. Similar methods, formulated in Mellin space have been

proposed elsewhere [131, 132]. The method proposed here is formulated in momentum space

(“x-space”) and thus allows an easy access of available parameterizations of parton density

functions from global fits. The time-consuming calculation of the NLO matrix elements

in a Monte-Carlo integration needs to be done only once (and can therefore be done with

very high precision). The calculation of the NLO cross section from the convolution of the

matrix elements with parton density functions can then be performed within fractions of a

second. This method can therefore be used whenever a fast repeated evaluation of NLO cross

sections is needed using available parameterizations of parton density functions, especially

in iterative fitting procedures or in cases when cross sections have to be computed for many

different parton density functions.

��� �
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In perturbative QCD the cross section of any process in deep-inelastic lepton-hadron scat-

tering can be written as a convolution of (process specific) perturbative coefficients ca,n with

(universal) parton density functions fa/h of the hadron h, summed over all parton flavors a

207
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(see chapter 1)

σ =
∑
a,n

∫ 1

0

dx αn
s (μr) ca,n

(xBj

x
, μr, μf

)
fa/h(x, μf) . (C.1)

The sum runs over all parton flavors a and all orders n considered in the perturbative

expansion. The integration is carried out over all fractional parton momenta1 x. The

truncation of the perturbative expansion at a fixed order introduces a dependence of the

cross section on the choice of the renormalization scale μr and the factorization scale μf .

These scales are usually identified with large final state momenta (ET , Q) which are in

general integrated over.

Our aim is now to rewrite this equation to obtain a factorizable expression where the

convolution of the perturbative coefficients and the parton density functions is reduced to a

product. In the following we explain how this can be achieved and which approximations are

needed, to reproduce the results obtained in a direct integration according to (C.1) within

two per mil.
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For the moment we ignore the dependences on μr and μf in (C.1), assuming that both have

fixed values. The x-dependence of the parton density functions fa/h(x) can be approximated

using a linear interpolation within sufficiently small intervals in log10(x). We therefore

introduce a discrete set of x-values labeled xi (i = 0, 1, 2, · · ·) with xi < xi−1 < xi−2 < · · · <
x0 = 1. The xi are equidistant in log10(x) with distances Δl ≡ (log10(xi)− log10(xi+1)). We

define a set of eigenfunctions E(i)(x) by

E(i)(x) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 x = xi
log10(xi−1)−log10(x)

Δl
xi−1 < x < xi

log10(x)−log10(xi+1)
Δl

xi < x < xi+1

0 x < xi−1 , or x > xi+1

. (C.2)

The parton distributions fa/h(x) can then be approximated by a linear combination of the

E(i)(x) with coefficients given by the values fa/h(xi) of the parton distributions at the discrete

points xi
fa/h(x) �

∑
i

fa/h(xi) E
(i)(x) . (C.3)

An example, where a given parameterization of the gluon density is approximated by a

linear combination of the E(i)(x) is shown in Fig. C.1 for a choice of 25 divisions per log10(x)

corresponding to Δl = 1/25. Fig. C.2 shows the ratio of the approximation and the original

1The parton momentum fraction is here labeled x and must not be confused with the Bjorken scaling

variable which is here throughout written with a subscript: xBj.
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Figure C.1: A graphical representation of a linear combination of eigenfunctions E(i)(x) to

approximate the CTEQ4M gluon density at a factorization scale μ2
f = 200GeV2.

distribution for different parton flavors (as defined in section 8.2.2). We see that for x < 0.3

we achieve a precision better than two per mil.

Now we can insert the approximation of the parton density functions (C.3) in the per-

turbative cross section formula (C.1) and obtain

σ �
∑
a,n,i

αn
s fa/h(xi)

∫
dx ca,n

(xBj

x

)
E(i)(x) . (C.4)

The fa/h(xi) are no longer functions of x but constants which can be pulled out of the integral,

together with αs. The integral is therefore independent of the parton density functions and

the value of αs. For a short hand notation of the integral we use the following definition

σ̃(i)
a,n ≡

∫
dx ca,n

(xBj

x

)
E(i)(x) . (C.5)

The σ̃
(i)
a,n can now be computed once for the eigenfunctions of every i in all orders n and for

all parton flavors a. Using the σ̃
(i)
a,n the final cross section can be calculated for arbitrary

parameterizations of the parton distributions and for any αs value as

σ �
∑
a,n,i

αn
s σ̃

(i)
a,n fa/h(xi) . (C.6)

The time consuming step of the procedure is only the computation of the σ̃
(i)
a,n in (C.5) which

involves the integration over the phase space and the calculation of the (jet-) observable(s).

All further calculations to obtain the final cross section can be performed very fast, according

to (C.6).
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Figure C.2: The ratio of the approximations using a linear interpolation and the original

parton distributions (for CTEQ4M partons). The approximations are shown for the gluon

density (xG(x)), the charge squared weighted sum of the quark densities (xΔ(x)), and the

sum of the quark densities (xΣ(x)).

��� %���	6�����	
� 	) ��� ��
	���������	
 �
+ ��� ����

�	������	
 ����� ����
+�
��

In (C.1) the perturbative coefficients, the parton density functions and the strong coupling

constant also depend on the renormalization and/or the factorization scales μr and μf . In

the following we assume that both scales are set to the same value μr = μf = μ (this can be

easily generalized).

The scale dependences can be considered by calculating the total cross section σ as a

sum of cross sections σj which are calculated within sufficiently small intervals of μ. The

contribution from each interval (with some intermediate value μ(j)) is given by (C.6) and

the total cross section by

σ �
∑
a,n,i,j

αn
s (μ

(j)
r ) σ̃

(i)
a,n,j(μ

(j)
r , μ

(j)
f ) fa/h(xi, μ

(j)
f ) . (C.7)

Within the j-th interval approximations for the factorization and the renormalization scale

dependences are made.
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The factorization scale dependence of the parton distributions is given by the DGLAP evo-

lution equations and involves a mixing of different parton flavors. An exact treatment of this

dependence has been proposed in [132]. We follow the approximation made in [131] to divide

the range of the factorization scale into sufficiently small bins, using the fixed value μ
(j)
f for

the computations within these bins. Since the parton distributions depend only logarithmi-

cally on the scale μf this is no strong restriction. At NLO a large part of the μf dependence

is compensated by a corresponding term in the perturbative coefficients ca,n(μr, μf), so that

the error is of higher order in αs. In general the bin width (and the number of bins) can be

adjusted to keep the error arbitrarily small.
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As for the factorization scale μf , the integration over the renormalization scale μr is replaced

in (C.7) by a sum over intervals of μr. In principle the same arguments as in the discussion

for the factorization scale can be applied and the calculations can be performed at fixed

values μ
(j)
r .
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Based on the discussions above we have obtained the following formula

σ =
∑
a,n,i,j

αn
s (μ

(j)
r ) σ̃

(i)
a,n,j(μ

(j)
r , μ

(j)
f ) fa/h(xi, μ

(j)
f ) . (C.8)

The sum runs over four indices n, a, i, j where n denotes the power of the strong coupling con-

stant, and a the flavor of the parton density functions. The index i refers to a set of discrete

x-values (xi) between which the parton distributions are interpolated. The index j denotes

the ranges within which the approximations of the renormalization and the factorization

scale dependences are made.

Using expression (C.8), the σ̃
(i)
a,n,j(μ

(j)
r , μ

(j)
f ) can be calculated once, with very high preci-

sion. The cross section can then be calculated for arbitrary parameterizations of the parton

density functions and arbitrary αs values within fractions of a second.

For the present analysis we have used the DISENT program to calculate the σ̃
(i)
a,n,j(μ

(j)
r , μ

(j)
f )

for all cross sections with a statistical precision, corresponding to an integrated luminosity

of Lint � 8000 pb−1. The difference between the direct integration in DISENT and the fast

integration, using the approximations described above, is always below 2 per mil for all bins

of all distributions.
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In this appendix we list the numerical values of all jet cross sections that were used in the

QCD analysis, i.e. the inclusive jet and the dijet cross sections at Q2 > 150GeV2. Quoted

are the values of the cross sections integrated over the corresponding bin (in the result plots

in chapter 7 the values are divided by the bin-size).

The listing includes all experimental uncertainties (as described in section 6.3) which are

here separated into the correlated and the uncorrelated part. Since the interpretation of the

results (as e.g. in a QCD analysis) does not require the knowledge of the single contributions

to the uncorrelated part of the uncertainties, we only present the total uncorrelated uncer-

tainty while we list the single contributions to the correlated uncertainty in separate columns

for all sources. The uncertainty from the hadronic energy scale of the Liquid Argon calorime-

ter is quoted asymmetric. The left (right) value corresponds to an increase (decrease) of the

calibration constants. The uncertainties of the positron energy and the positron polar angle

are defined to be symmetric by taking the maximum of the upwards and downwards devia-

tions. The signs are quoted for a positive variation of the corresponding source. Note that

only the correlated contribution from these sources is listed. As described in section 6.3 some

of these sources contribute also to the uncorrelated uncertainty. The latter contribution is

already contained in the (quadratic) sum of all uncorrelated uncertainties.

The full phase space definitions of the observables have been given in chapter 7. Please

note that all measured jet cross sections are corrected for higher order QED effects (as de-

scribed in section 4.4) whereas no corrections for non-perturbative effects (hadronization

corrections) have been applied to the data. The size of the latter has been estimated accord-

ing to the procedure as described in chapter 3 and the values are quoted in the last column

of the result tables. The values are given in percent and refer to the difference by which the

partonic cross sections are larger than the corresponding hadronic cross sections (i.e. after

hadronization).

We refer to the bins in which the jet cross sections are measured by a number and a

letter. The ranges of the variables are quoted in the tables in the corresponding sections.
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number corresponding Q2 range
1 150 < Q2 < 200GeV2

2 200 < Q2 < 300GeV2

3 300 < Q2 < 600GeV2

4 600 < Q2 < 5000GeV2

letter corresponding ET range
a 7 < ET < 11GeV

b 11 < ET < 18GeV

c 18 < ET < 30GeV

d 30 < ET < 50GeV

the inclusive jet cross section d2σjet/(dET dQ
2) — inclusive k⊥ jet algorithm

single contributions to correlated uncertainty
bin cross statistical total uncorrelated correlated model dep. positron positron LAr hadr. hadroniz.
No. section uncert. uncertainty uncertainty uncertainty detector corr. energy scale polar angle energy scale correct.

(in pb) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (percent)

1 a 62.220 ± 2.9 9.6 -9.5 7.6 -7.4 5.9 -5.9 ± 4.7 0.8 1.7 2.6 -2.6 8.4
1 b 26.084 ± 4.4 16.3 -13.9 13.6 -11.3 9.0 -8.0 ± 6.3 0.8 1.6 6.0 -4.4 5.2
1 c 5.819 ± 9.2 13.8 -15.6 12.3 -13.8 6.3 -7.2 ± 4.3 1.0 1.7 3.9 -5.3 4.7
1 d 0.719 ± 27.8 34.0 -35.4 32.4 -33.4 10.4 -11.6 ± 3.4 1.9 2.7 9.2 -10.5 4.9
2 a 62.256 ± 2.6 7.6 -7.2 6.4 -6.1 4.1 -3.9 ± 2.3 0.2 1.0 2.8 -2.5 8.8
2 b 29.802 ± 3.7 12.2 -12.7 10.3 -10.8 6.5 -6.7 ± 4.0 0.7 0.2 4.9 -5.2 4.7
2 c 6.989 ± 7.6 16.8 -14.8 14.3 -12.4 8.9 -8.1 ± 6.7 0.3 1.9 5.3 -3.8 4.8
2 d 0.994 ± 20.0 28.7 -33.5 26.0 -29.9 12.1 -15.0 ± 8.6 2.7 1.9 7.7 -11.8 5.1
3 a 61.577 ± 2.7 5.8 -6.1 4.9 -5.3 3.0 -3.1 ± 1.2 0.7 0.8 2.0 -2.2 8.8
3 b 35.010 ± 3.5 11.9 -9.9 10.1 -8.2 6.3 -5.5 ± 3.5 0.5 1.4 4.8 -3.6 4.2
3 c 9.644 ± 6.6 15.7 -17.9 13.3 -15.3 8.4 -9.4 ± 4.2 1.6 3.7 5.9 -7.2 4.7
3 d 1.362 ± 20.0 36.3 -29.7 32.1 -26.4 17.1 -13.7 ± 11.4 1.1 1.6 12.5 -7.1 4.9
4 a 46.515 ± 3.1 7.4 -6.8 6.3 -5.8 3.8 -3.5 ± 0.7 0.0 1.4 3.1 -2.7 9.9
4 b 26.409 ± 4.1 8.8 -8.8 7.6 -7.6 4.4 -4.4 ± 1.6 0.6 1.5 3.5 -3.5 4.2
4 c 11.288 ± 6.0 11.5 -11.6 10.3 -10.3 5.3 -5.4 ± 2.4 0.3 0.5 4.4 -4.6 3.4
4 d 1.993 ± 15.1 27.2 -23.0 24.6 -21.2 11.5 -8.9 ± 1.2 0.9 1.9 11.1 -8.4 3.3

the inclusive jet cross section d2σjet/(dET dQ
2) — Aachen jet algorithm
single contributions to correlated uncertainty

bin cross statistical total uncorrelated correlated model dep. positron positron LAr hadr. hadroniz.
No. section uncert. uncertainty uncertainty uncertainty detector corr. energy scale polar angle energy scale correct.

(in pb) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (percent)

1 a 59.249 ± 2.9 9.9 -9.7 8.0 -7.8 5.9 -5.8 ± 4.4 0.8 1.7 3.0 -2.9 12.2
1 b 24.660 ± 4.5 15.4 -14.3 12.9 -11.9 8.5 -7.9 ± 5.8 0.5 1.5 5.7 -4.9 10.8
1 c 5.266 ± 9.7 15.1 -16.3 13.0 -14.0 7.6 -8.2 ± 5.8 1.6 2.6 3.6 -4.7 9.5
1 d 0.761 ± 27.9 37.1 -33.8 35.0 -32.4 12.3 -9.7 ± 1.6 0.0 0.0 12.1 -9.4 8.9
2 a 60.286 ± 2.6 7.3 -7.9 6.1 -6.6 4.1 -4.3 ± 2.5 0.2 1.1 2.6 -2.9 12.1
2 b 28.446 ± 3.7 12.2 -12.1 10.4 -10.4 6.4 -6.2 ± 3.5 0.8 0.2 5.1 -4.8 9.8
2 c 6.786 ± 7.7 17.7 -16.5 14.8 -13.6 9.8 -9.3 ± 7.8 1.2 1.5 5.4 -4.4 9.0
2 d 0.935 ± 20.5 28.8 -37.8 26.4 -33.9 11.5 -16.7 ± 7.5 1.8 2.0 8.2 -14.5 8.5
3 a 61.343 ± 2.7 7.3 -6.3 6.3 -5.2 3.8 -3.5 ± 1.6 1.2 1.0 2.6 -2.2 11.4
3 b 33.301 ± 3.5 10.3 -9.6 8.6 -8.0 5.6 -5.3 ± 3.3 0.3 1.6 3.9 -3.5 8.5
3 c 9.037 ± 6.9 17.6 -18.4 15.2 -15.8 9.0 -9.4 ± 3.8 1.5 3.2 7.2 -7.7 8.8
3 d 1.197 ± 21.4 38.7 -29.9 33.9 -26.4 18.7 -14.2 ± 13.0 2.5 1.9 13.0 -4.5 8.0
4 a 45.452 ± 3.2 8.0 -6.5 6.8 -5.4 4.1 -3.5 ± 1.4 0.5 1.4 3.2 -2.4 11.8
4 b 25.046 ± 4.1 8.0 -8.6 6.8 -7.3 4.2 -4.4 ± 2.6 0.4 1.1 2.6 -3.0 7.6
4 c 10.873 ± 6.2 13.0 -13.5 11.6 -11.9 6.0 -6.3 ± 2.0 0.5 0.5 5.4 -5.7 6.7
4 d 1.690 ± 16.4 30.0 -23.5 27.1 -21.8 12.9 -8.9 ± 0.2 2.4 2.7 12.3 -8.0 6.3
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2

bin No. corresponding Q2 range
1 150 < Q2 < 175GeV2

2 175 < Q2 < 200GeV2

3 200 < Q2 < 235GeV2

4 235 < Q2 < 280GeV2

5 280 < Q2 < 350GeV2

6 350 < Q2 < 450GeV2

bin No. corresponding Q2 range
7 450 < Q2 < 600GeV2

8 600 < Q2 < 900GeV2

9 900 < Q2 < 1500GeV2

10 1500 < Q2 < 3000GeV2

11 3000 < Q2 < 6000GeV2

12 6000 < Q2 < 15000GeV2

the dijet cross section d2σdijet/dQ
2

single contributions to correlated uncertainty
bin cross statistical total uncorrelated correlated model dep. positron positron LAr hadr. hadroniz.
No. section uncert. uncertainty uncertainty uncertainty detector corr. energy scale polar angle energy scale correct.

(in pb) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (percent)

inclusive k⊥ jet algorithm
1 14.136 ± 6.5 15.6 -17.0 12.5 -13.9 9.3 -9.8 ± 8.0 2.7 0.9 3.5 -4.6 6.4
2 12.459 ± 6.4 12.6 -12.6 10.6 -10.6 6.8 -6.8 ± 3.1 2.2 3.9 3.9 -3.9 5.7
3 11.934 ± 6.1 11.0 -12.8 9.6 -11.2 5.4 -6.2 ± 2.0 2.1 2.2 3.7 -4.8 6.2
4 13.583 ± 5.8 12.1 -13.6 10.0 -11.3 6.9 -7.5 ± 4.7 1.8 2.9 3.5 -4.6 5.8
5 13.607 ± 5.8 9.4 -10.1 8.5 -9.2 3.9 -4.3 ± 1.3 0.5 0.5 3.2 -3.8 5.4
6 12.372 ± 6.2 10.1 -10.8 8.8 -9.5 4.9 -5.1 ± 0.8 1.3 2.7 3.4 -3.7 5.9
7 11.761 ± 6.6 12.0 -10.3 10.9 -9.4 5.0 -4.0 ± 1.0 0.6 0.6 4.6 -3.5 6.0
8 12.263 ± 6.5 13.1 -11.7 11.6 -10.3 6.1 -5.5 ± 2.9 0.6 0.9 5.1 -4.3 5.7
9 8.777 ± 7.4 11.8 -9.3 10.6 -8.6 5.0 -3.6 ± 1.9 1.1 1.1 4.1 -2.1 5.8

10 6.487 ± 9.2 11.2 -11.3 10.5 -10.6 3.7 -3.9 ± 0.7 1.6 1.3 2.6 -2.8 6.3
11 2.341 ± 14.1 17.0 -17.3 15.7 -16.0 6.5 -6.6 ± 5.8 0.7 1.1 2.2 -2.5 5.9
12 0.468 ± 27.3 31.1 -31.5 29.1 -29.4 11.0 -11.3 ± 2.7 7.9 6.3 3.2 -4.0 9.5

Aachen jet algorithm
1 13.837 ± 6.6 15.7 -16.0 12.6 -13.0 9.3 -9.3 ± 7.8 2.7 0.9 3.8 -4.0 11.0
2 12.243 ± 6.5 11.6 -11.3 9.8 -9.6 6.1 -5.9 ± 2.5 1.4 3.5 3.8 -3.5 10.0
3 11.280 ± 6.2 10.9 -12.7 9.1 -10.8 6.0 -6.6 ± 2.6 3.1 2.8 3.0 -4.2 10.6
4 13.229 ± 5.9 12.7 -13.0 10.6 -10.9 7.0 -7.2 ± 3.5 2.4 3.5 4.1 -4.5 9.8
5 13.178 ± 5.9 11.4 -10.0 10.1 -8.9 5.2 -4.6 ± 2.6 1.3 0.7 4.0 -3.1 9.6
6 11.895 ± 6.4 10.2 -10.7 9.0 -9.4 4.8 -5.0 ± 0.7 0.8 2.8 3.4 -3.7 9.7
7 11.427 ± 6.8 11.8 -10.2 10.7 -9.4 4.9 -3.9 ± 0.0 0.4 0.7 4.6 -3.5 9.6
8 11.848 ± 6.6 11.6 -12.1 10.3 -10.7 5.4 -5.6 ± 2.9 0.7 1.1 4.1 -4.4 8.9
9 8.327 ± 7.6 10.9 -9.9 10.0 -9.2 4.3 -3.7 ± 1.7 1.0 0.8 3.5 -2.6 8.8

10 5.834 ± 9.6 11.1 -11.8 10.5 -11.1 3.5 -4.1 ± 0.2 2.1 1.3 2.1 -2.9 8.8
11 2.239 ± 14.3 17.1 -18.2 15.8 -16.7 6.6 -7.3 ± 5.3 1.9 2.3 2.0 -3.6 8.7
12 0.519 ± 26.6 31.3 -32.0 28.8 -29.4 12.3 -12.8 ± 3.9 9.3 6.6 2.5 -4.1 10.9

exclusive k⊥ jet algorithm
1 10.392 ± 7.8 18.7 -17.9 15.4 -14.6 10.6 -10.4 ± 7.3 3.7 3.1 5.8 -5.3 21.8
2 9.920 ± 7.2 13.0 -15.0 11.0 -12.9 6.9 -7.6 ± 0.8 3.0 4.1 4.4 -5.4 19.6
3 9.717 ± 6.8 12.4 -11.3 11.2 -10.2 5.4 -4.8 ± 1.6 1.0 1.8 4.5 -3.8 19.6
4 11.686 ± 6.3 12.6 -13.3 10.7 -11.3 6.7 -7.0 ± 4.2 2.5 2.2 3.7 -4.3 17.2
5 13.288 ± 5.9 14.5 -10.4 13.0 -9.3 6.5 -4.7 ± 1.4 1.0 1.2 6.0 -3.9 14.4
6 13.546 ± 6.1 11.7 -10.7 10.5 -9.5 5.2 -4.9 ± 0.1 1.7 2.1 4.2 -3.8 11.6
7 15.129 ± 6.1 11.7 -11.2 10.1 -9.5 6.0 -5.8 ± 3.8 1.7 1.7 3.7 -3.4 7.7
8 14.456 ± 6.1 10.8 -9.3 9.6 -8.4 4.9 -4.1 ± 1.8 0.8 1.4 4.0 -2.9 6.3
9 11.209 ± 6.6 9.6 -9.4 8.8 -8.6 3.9 -3.9 ± 0.4 1.2 1.5 3.0 -3.0 5.3

10 8.943 ± 7.6 10.1 -10.4 9.3 -9.6 3.9 -4.1 ± 0.1 2.1 1.2 2.7 -3.0 6.3
11 3.205 ± 11.6 14.3 -14.6 13.2 -13.5 5.4 -5.6 ± 4.1 1.5 0.8 2.7 -3.0 6.9
12 1.044 ± 18.5 25.3 -24.4 22.3 -21.6 11.8 -11.3 ± 9.1 6.2 2.2 3.3 -0.5 9.7

Cambridge jet algorithm
1 7.013 ± 9.7 23.5 -23.4 18.8 -18.7 14.1 -14.1 ± 12.5 3.1 2.0 5.1 -5.3 25.0
2 7.721 ± 8.8 15.5 -14.1 13.4 -12.1 7.8 -7.3 ± 1.6 2.7 4.7 5.2 -4.4 23.6
3 7.383 ± 8.0 14.3 -13.9 12.7 -12.3 6.7 -6.4 ± 3.0 0.6 2.8 5.0 -4.7 23.2
4 8.952 ± 7.5 16.2 -15.6 13.4 -12.8 9.2 -9.0 ± 6.5 3.4 3.1 4.3 -3.9 21.5
5 10.829 ± 6.8 11.6 -12.4 10.4 -11.1 5.0 -5.6 ± 2.8 0.4 0.5 3.9 -4.5 17.8
6 11.593 ± 6.8 13.8 -13.1 12.0 -11.4 6.8 -6.3 ± 1.4 3.0 2.9 4.9 -4.3 13.8
7 13.083 ± 6.7 10.6 -11.5 9.4 -10.2 4.8 -5.4 ± 3.3 1.4 0.9 2.8 -3.6 9.4
8 13.737 ± 6.4 10.5 -9.5 9.5 -8.7 4.4 -3.9 ± 1.4 0.4 0.8 3.8 -3.2 7.1
9 9.645 ± 7.2 10.6 -9.4 9.8 -8.8 4.2 -3.6 ± 0.2 1.0 1.2 3.6 -2.8 6.7

10 8.084 ± 8.1 10.2 -10.4 9.5 -9.6 3.5 -3.9 ± 0.6 1.8 1.3 2.2 -2.7 7.2
11 2.800 ± 12.5 16.9 -17.1 14.9 -15.1 7.8 -7.9 ± 7.2 1.5 1.3 1.9 -2.3 8.5
12 0.769 ± 21.2 29.6 -29.1 25.8 -25.5 14.4 -14.2 ± 12.2 5.8 3.5 3.5 -2.3 12.2
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�#$#) �	
 ��<
� ����� �
!���� d2σdijet/(dET dQ2)

bin number corresponding Q2 range
1 150 < Q2 < 200GeV2

2 200 < Q2 < 300GeV2

3 300 < Q2 < 600GeV2

4 600 < Q2 < 5000GeV2

letter corresponding ET range
a 8.5 < ET < 11.5GeV

b 11.5 < ET < 15GeV

c 15 < ET < 20GeV

d 20 < ET < 35GeV

the dijet cross section d2σdijet/(dET dQ
2)

single contributions to correlated uncertainty
bin cross statistical total uncorrelated correlated model dep. positron positron LAr hadr. hadroniz.
No. section uncert. uncertainty uncertainty uncertainty detector corr. energy scale polar angle energy scale correct.

(in pb) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (percent)

inclusive k⊥ jet algorithm

1 a 14.270 ± 6.3 11.2 -13.0 9.5 -11.2 5.9 -6.6 ± 4.7 0.6 1.7 2.8 -4.0 7.3
1 b 6.662 ± 9.0 16.5 -15.7 14.1 -13.4 8.5 -8.2 ± 7.0 0.7 1.7 4.0 -3.4 4.2
1 c 4.141 ± 12.0 19.1 -21.3 16.2 -18.2 10.2 -11.1 ± 8.7 1.4 3.4 3.6 -5.7 5.9
1 d 1.576 ± 18.2 26.5 -22.1 24.6 -21.0 9.9 -6.8 ± 0.8 2.4 2.3 9.1 -5.7 4.4
2 a 15.824 ± 5.5 8.6 -11.0 7.8 -9.9 3.6 -4.9 ± 0.9 1.2 0.9 2.8 -4.3 7.3
2 b 7.356 ± 7.6 9.6 -11.2 9.0 -10.3 3.4 -4.4 ± 0.9 0.3 1.3 2.6 -3.8 3.8
2 c 4.694 ± 10.1 23.5 -21.1 19.4 -17.3 13.2 -12.1 ± 10.8 1.4 1.4 7.2 -5.0 5.5
2 d 1.829 ± 14.5 22.1 -21.8 19.6 -19.2 10.2 -10.2 ± 8.2 0.4 2.3 5.4 -5.4 4.4
3 a 14.545 ± 5.8 8.8 -9.3 8.0 -8.5 3.7 -3.8 ± 0.6 0.8 1.4 2.9 -3.0 7.6
3 b 10.282 ± 6.9 10.4 -11.2 9.5 -10.2 4.2 -4.8 ± 1.9 1.0 1.3 3.0 -3.8 4.5
3 c 4.882 ± 9.7 13.7 -15.6 12.4 -14.1 5.8 -6.7 ± 2.4 2.0 2.3 4.0 -5.3 3.0
3 d 3.378 ± 12.1 24.2 -17.4 21.5 -15.5 11.1 -7.9 ± 0.4 2.8 4.9 9.4 -5.2 4.4
4 a 13.029 ± 6.4 10.2 -7.7 9.3 -7.1 4.2 -2.8 ± 1.6 0.8 0.6 3.5 -1.4 8.5
4 b 7.833 ± 8.1 12.5 -10.9 11.0 -9.7 5.8 -5.0 ± 3.5 2.6 0.9 3.4 -1.5 5.0
4 c 4.324 ± 10.6 13.7 -14.9 12.7 -13.7 5.1 -5.8 ± 1.9 1.6 2.1 3.6 -4.6 2.7
4 d 4.008 ± 11.0 15.9 -18.9 14.7 -17.2 6.0 -7.8 ± 0.5 1.4 1.2 5.5 -7.3 3.6
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the dijet cross section d2σdijet/(dET dQ
2)

single contributions to correlated uncertainty
bin cross statistical total uncorrelated correlated model dep. positron positron LAr hadr. hadroniz.
No. section uncert. uncertainty uncertainty uncertainty detector corr. energy scale polar angle energy scale correct.

(in pb) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (percent)

Aachen jet algorithm

1 a 14.503 ± 6.2 10.3 -10.4 8.8 -9.0 5.3 -5.2 ± 3.9 1.4 1.6 2.6 -2.3 11.1
1 b 6.104 ± 9.3 16.5 -16.9 14.4 -14.8 8.0 -8.2 ± 5.3 1.3 1.9 5.3 -5.6 9.5
1 c 3.968 ± 12.3 26.6 -27.4 21.0 -21.6 16.3 -16.8 ± 15.2 2.9 4.2 2.7 -4.8 11.3
1 d 1.578 ± 18.6 25.5 -22.8 23.7 -21.5 9.5 -7.5 ± 4.7 0.9 1.2 8.0 -5.4 8.4
2 a 14.993 ± 5.6 7.6 -9.0 7.0 -8.3 2.9 -3.6 ± 0.2 0.5 1.0 2.2 -3.1 11.1
2 b 7.606 ± 7.6 12.8 -12.6 11.7 -11.5 5.3 -5.1 ± 1.1 0.5 0.8 4.9 -4.6 8.4
2 c 4.106 ± 10.5 21.3 -20.2 17.5 -16.4 12.2 -11.8 ± 10.8 0.7 2.3 4.9 -3.6 9.8
2 d 1.808 ± 14.7 24.8 -27.0 21.3 -23.2 12.7 -13.8 ± 10.9 0.5 1.6 6.1 -8.2 9.3
3 a 14.627 ± 5.9 9.7 -7.9 8.8 -7.3 4.1 -2.9 ± 0.9 0.8 1.1 3.4 -1.9 11.1
3 b 9.319 ± 7.2 10.4 -12.5 9.6 -11.3 4.1 -5.3 ± 0.8 0.1 1.5 3.4 -4.8 8.5
3 c 5.140 ± 9.6 14.8 -17.1 13.4 -15.3 6.3 -7.7 ± 2.8 1.8 2.4 4.5 -6.3 7.6
3 d 2.839 ± 13.0 20.4 -17.0 18.4 -15.5 8.9 -7.0 ± 0.2 2.4 4.4 7.2 -4.6 8.5
4 a 11.853 ± 6.7 7.3 -9.1 6.9 -8.4 2.5 -3.5 ± 0.8 1.0 1.4 0.5 -2.5 10.9
4 b 8.138 ± 8.1 13.6 -10.2 12.1 -9.4 6.1 -4.2 ± 2.4 2.0 1.3 4.8 -2.0 8.4
4 c 3.602 ± 11.4 14.5 -16.2 13.5 -14.9 5.3 -6.5 ± 3.5 0.8 1.4 3.4 -5.0 5.7
4 d 4.049 ± 11.1 17.6 -16.4 16.2 -15.2 7.0 -6.2 ± 0.3 1.0 0.9 6.7 -5.9 7.1

exclusive k⊥ jet algorithm

1 a 7.028 ± 9.7 16.5 -13.6 14.9 -12.3 7.2 -5.6 ± 3.2 2.0 1.3 5.8 -3.6 24.6
1 b 7.337 ± 8.5 15.9 -15.6 13.9 -13.6 7.8 -7.6 ± 5.3 0.6 1.2 5.3 -5.1 13.0
1 c 3.870 ± 12.2 14.6 -17.3 13.4 -15.8 5.6 -7.2 ± 4.3 0.8 2.6 1.8 -4.9 17.5
1 d 1.762 ± 17.6 21.6 -23.2 20.3 -21.6 7.5 -8.7 ± 5.7 0.8 1.1 4.5 -6.2 15.9
2 a 8.020 ± 7.9 11.2 -12.0 10.2 -10.8 4.6 -5.2 ± 1.8 2.6 1.3 2.6 -3.6 18.6
2 b 8.250 ± 7.4 11.9 -11.3 10.8 -10.5 4.9 -4.2 ± 1.8 1.1 1.0 4.1 -3.1 8.9
2 c 4.901 ± 9.7 21.1 -15.2 18.7 -13.6 9.8 -6.9 ± 4.2 1.0 2.0 8.4 -4.8 11.9
2 d 2.021 ± 14.4 24.7 -26.5 20.6 -22.3 13.6 -14.4 ± 12.8 0.4 0.9 4.0 -6.3 13.6
3 a 11.571 ± 6.9 14.1 -11.0 12.3 -9.4 6.9 -5.8 ± 4.1 2.8 1.6 4.3 -2.1 10.2
3 b 10.706 ± 6.8 12.1 -11.5 11.0 -10.4 5.1 -4.9 ± 2.0 0.8 1.0 4.3 -4.1 3.5
3 c 6.214 ± 8.8 14.8 -12.6 13.3 -11.4 6.4 -5.3 ± 2.0 1.6 2.2 5.3 -3.8 8.3
3 d 3.145 ± 12.3 18.0 -18.6 16.4 -16.8 7.4 -7.9 ± 0.2 2.1 4.1 5.6 -6.3 10.6
4 a 10.341 ± 7.2 11.6 -11.9 10.2 -10.5 5.5 -5.7 ± 3.6 1.9 1.1 3.2 -3.5 7.8
4 b 8.327 ± 7.7 11.7 -11.2 10.2 -9.7 5.8 -5.5 ± 4.8 1.0 1.1 2.4 -1.8 2.3
4 c 5.659 ± 9.5 11.1 -13.3 10.6 -12.3 3.5 -5.0 ± 1.3 1.1 1.3 2.4 -4.3 0.7
4 d 4.594 ± 10.3 19.1 -13.4 17.2 -12.6 8.1 -4.6 ± 1.7 0.2 0.5 7.8 -3.9 3.4

Cambridge jet algorithm

1 a 4.645 ± 12.3 19.8 -16.1 17.9 -14.5 8.4 -7.1 ± 6.2 1.2 1.8 5.1 -2.3 34.0
1 b 5.012 ± 11.0 22.4 -24.1 18.4 -20.0 12.7 -13.5 ± 11.4 1.4 1.3 5.3 -6.8 13.8
1 c 3.320 ± 13.5 19.6 -19.6 16.5 -16.4 10.6 -10.7 ± 6.9 3.6 6.8 2.0 -2.5 16.8
1 d 1.486 ± 20.1 24.8 -26.5 23.6 -25.0 7.6 -8.9 ± 1.8 1.0 1.4 7.0 -8.4 13.9
2 a 6.121 ± 9.4 10.5 -14.3 9.8 -13.0 3.6 -5.8 ± 0.5 2.4 2.2 0.1 -4.5 25.2
2 b 6.120 ± 8.9 17.2 -12.6 15.3 -11.2 7.8 -5.7 ± 4.5 0.6 1.9 5.9 -2.5 10.8
2 c 3.721 ± 11.3 19.2 -18.6 16.8 -16.2 9.4 -9.1 ± 6.3 0.2 3.2 6.0 -5.6 12.5
2 d 1.691 ± 15.9 33.5 -33.6 27.0 -27.2 19.8 -19.8 ± 18.7 0.8 0.9 6.3 -6.4 13.7
3 a 9.311 ± 8.0 13.7 -12.9 11.8 -11.1 6.9 -6.5 ± 5.2 1.3 2.0 3.5 -2.7 15.0
3 b 8.491 ± 7.9 12.9 -11.3 11.8 -10.5 5.1 -4.3 ± 0.2 0.4 1.0 4.8 -3.9 5.7
3 c 5.519 ± 9.7 13.2 -17.7 11.7 -15.6 6.2 -8.3 ± 3.5 2.7 3.1 2.7 -6.2 7.8
3 d 2.736 ± 13.8 22.9 -19.4 20.7 -17.8 9.7 -7.8 ± 0.7 2.1 4.2 8.4 -6.0 9.2
4 a 9.681 ± 7.6 11.5 -9.8 10.4 -8.9 5.0 -4.2 ± 3.1 1.7 0.5 3.1 -1.5 9.8
4 b 7.204 ± 8.4 12.2 -12.6 10.7 -11.1 5.8 -6.1 ± 5.1 0.4 1.2 1.9 -2.7 2.6
4 c 5.066 ± 10.1 14.8 -14.4 13.7 -13.2 5.8 -5.6 ± 2.4 1.2 0.7 4.9 -4.6 1.2
4 d 4.247 ± 10.9 15.7 -14.4 14.5 -13.4 6.0 -5.1 ± 1.1 1.6 0.8 5.3 -4.3 3.4
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�#$#1 �	
 ��<
� ����� �
!���� d2σdijet/(dMjj dQ
2)

bin number corresponding Q2 range
1 150 < Q2 < 200GeV2

2 200 < Q2 < 300GeV2

3 300 < Q2 < 600GeV2

4 600 < Q2 < 5000GeV2

letter corresponding Mjj range
a 15 < Mjj < 22GeV

b 22 < Mjj < 31GeV

c 31 < Mjj < 45GeV

d 45 < Mjj < 85GeV

the dijet cross section d2σdijet/(dMjj dQ
2)

single contributions to correlated uncertainty
bin cross statistical total uncorrelated correlated model dep. positron positron LAr hadr. hadroniz.
No. section uncert. uncertainty uncertainty uncertainty detector corr. energy scale polar angle energy scale correct.

(in pb) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (percent)

inclusive k⊥ jet algorithm

1 a 6.559 ± 8.9 15.7 -19.3 13.1 -16.6 8.5 -9.9 ± 7.4 1.5 1.7 3.1 -5.9 7.4
1 b 10.621 ± 7.3 12.8 -12.6 10.7 -10.5 7.1 -6.9 ± 5.2 0.5 3.6 2.9 -2.5 5.6
1 c 7.306 ± 9.2 16.3 -13.1 14.4 -11.6 7.6 -6.2 ± 3.8 1.7 3.0 5.5 -3.0 5.0
1 d 2.356 ± 14.9 19.9 -21.1 18.5 -19.4 7.4 -8.2 ± 4.4 0.6 0.0 5.8 -6.7 6.0
2 a 8.248 ± 7.4 12.2 -14.9 10.3 -12.9 6.5 -7.4 ± 5.9 0.6 0.9 2.0 -4.1 6.8
2 b 10.829 ± 6.4 10.5 -11.0 9.5 -9.9 4.4 -4.9 ± 2.2 0.7 0.7 3.4 -4.0 5.1
2 c 7.283 ± 7.9 13.7 -12.6 12.2 -11.2 6.3 -5.7 ± 3.7 0.7 0.6 4.8 -4.0 5.5
2 d 3.107 ± 12.4 24.7 -26.5 20.4 -22.1 14.0 -14.7 ± 12.4 1.1 2.2 5.8 -7.4 6.6
3 a 6.723 ± 8.2 11.9 -15.2 10.8 -13.9 4.9 -6.3 ± 3.1 0.4 0.2 3.5 -5.2 7.1
3 b 12.550 ± 6.3 9.3 -8.7 8.4 -7.8 4.0 -3.9 ± 1.6 0.1 2.2 2.4 -2.2 5.1
3 c 9.626 ± 7.4 13.6 -12.2 12.1 -10.8 6.2 -5.6 ± 2.1 1.5 2.1 5.0 -4.2 5.1
3 d 4.070 ± 10.9 17.4 -16.6 15.3 -14.7 8.1 -7.7 ± 4.7 1.3 3.1 5.5 -4.8 6.1
4 a 5.876 ± 9.4 14.7 -11.1 13.3 -10.3 6.3 -4.1 ± 3.1 1.8 1.1 4.8 -0.6 9.6
4 b 9.509 ± 7.4 10.8 -10.2 10.0 -9.5 4.1 -3.7 ± 0.7 0.9 0.8 3.6 -3.1 5.8
4 c 8.503 ± 7.8 9.4 -10.3 8.9 -9.6 3.1 -3.7 ± 1.0 0.2 0.9 2.4 -3.1 4.1
4 d 5.216 ± 10.1 14.4 -16.9 13.3 -15.3 5.4 -7.0 ± 1.5 0.8 0.6 4.9 -6.6 5.1
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the dijet cross section d2σdijet/(dMjj dQ
2)

single contributions to correlated uncertainty
bin cross statistical total uncorrelated correlated model dep. positron positron LAr hadr. hadroniz.
No. section uncert. uncertainty uncertainty uncertainty detector corr. energy scale polar angle energy scale correct.

(in pb) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (percent)

Aachen jet algorithm

1 a 6.914 ± 8.8 14.2 -12.5 12.7 -11.4 6.4 -5.2 ± 2.5 1.2 2.7 4.9 -3.1 11.4
1 b 9.824 ± 7.5 12.8 -14.4 10.1 -11.7 7.8 -8.4 ± 6.4 0.8 4.0 1.0 -3.2 10.0
1 c 7.301 ± 9.3 20.2 -13.6 17.6 -11.7 9.8 -6.8 ± 3.6 3.1 3.5 7.7 -3.1 9.6
1 d 2.080 ± 15.8 23.9 -27.6 20.7 -24.0 12.0 -13.7 ± 11.0 0.6 0.9 4.3 -8.0 11.7
2 a 8.056 ± 7.5 10.4 -11.7 9.5 -10.9 4.2 -4.3 ± 2.0 0.7 1.3 3.0 -3.1 9.8
2 b 10.208 ± 6.5 9.6 -10.6 8.9 -9.6 3.6 -4.4 ± 0.8 0.4 0.5 3.1 -4.0 9.3
2 c 7.223 ± 8.0 14.6 -13.7 12.5 -11.7 7.5 -7.0 ± 5.9 0.4 0.8 4.3 -3.3 10.8
2 d 2.931 ± 12.5 26.1 -27.3 22.1 -23.0 14.0 -14.6 ± 11.2 1.1 1.6 7.9 -9.0 11.1
3 a 6.532 ± 8.3 11.2 -11.3 10.3 -10.4 4.5 -4.6 ± 3.1 1.3 0.1 2.6 -2.8 10.5
3 b 12.076 ± 6.4 11.5 -10.1 10.2 -9.2 5.2 -4.4 ± 0.9 0.8 2.5 4.1 -3.1 8.3
3 c 9.460 ± 7.4 13.2 -13.1 11.7 -11.5 6.2 -6.3 ± 3.6 1.1 1.8 4.4 -4.5 9.9
3 d 3.953 ± 11.3 16.7 -17.7 15.0 -15.9 7.5 -7.9 ± 4.2 1.5 3.2 4.8 -5.4 10.9
4 a 5.566 ± 9.6 13.4 -11.7 12.1 -10.7 5.7 -4.7 ± 1.1 2.4 2.9 3.9 -2.2 11.9
4 b 9.491 ± 7.4 9.2 -9.5 8.6 -8.9 3.3 -3.4 ± 0.8 1.3 1.2 2.2 -2.4 8.1
4 c 7.672 ± 8.1 9.7 -10.7 9.2 -10.0 3.1 -3.8 ± 1.2 0.3 0.4 2.4 -3.2 7.2
4 d 4.918 ± 10.4 16.4 -17.4 15.0 -15.9 6.5 -7.2 ± 1.6 0.8 0.6 6.0 -6.8 9.1

exclusive k⊥ jet algorithm

1 a 2.064 ± 17.1 20.8 -21.8 19.9 -20.8 6.0 -6.7 ± 1.9 2.2 2.3 4.6 -5.4 67.4
1 b 7.107 ± 9.3 15.9 -17.9 13.3 -15.2 8.7 -9.5 ± 7.7 0.9 2.1 2.9 -4.9 20.2
1 c 7.450 ± 8.8 17.4 -14.3 15.3 -12.6 8.4 -6.8 ± 3.8 2.3 2.2 6.6 -4.4 10.7
1 d 3.746 ± 11.3 18.6 -18.5 16.8 -16.7 7.9 -7.9 ± 4.3 0.0 0.6 6.4 -6.4 7.6
2 a 4.260 ± 11.2 15.9 -17.9 14.3 -16.0 7.0 -8.1 ± 3.9 3.9 1.9 3.5 -5.5 38.8
2 b 7.042 ± 7.9 11.6 -11.3 10.6 -10.2 4.6 -4.7 ± 1.6 1.6 1.9 3.2 -3.3 16.3
2 c 8.471 ± 7.3 13.2 -11.2 12.0 -10.5 5.5 -4.0 ± 1.2 0.3 0.2 5.1 -3.5 8.8
2 d 5.014 ± 9.4 17.6 -17.7 15.2 -15.2 8.8 -9.1 ± 6.7 0.4 1.3 5.2 -5.7 5.9
3 a 6.973 ± 8.7 14.5 -14.0 12.8 -12.3 6.7 -6.7 ± 4.0 2.6 2.3 3.8 -3.9 13.0
3 b 11.833 ± 6.6 11.1 -8.9 10.2 -8.2 4.5 -3.4 ± 1.3 1.5 1.5 3.4 -1.7 8.6
3 c 10.566 ± 6.9 14.7 -9.9 13.3 -9.0 6.3 -4.0 ± 0.1 1.0 1.7 5.8 -3.2 7.0
3 d 5.959 ± 9.1 18.5 -17.6 16.4 -15.5 8.5 -8.2 ± 2.8 1.5 2.5 7.4 -7.0 7.4
4 a 9.827 ± 7.4 9.6 -9.7 9.2 -9.1 2.9 -3.5 ± 0.1 0.7 1.1 2.1 -2.8 4.5
4 b 9.866 ± 7.2 9.4 -9.0 8.7 -8.3 3.7 -3.5 ± 1.4 1.9 0.9 2.2 -1.8 1.6
4 c 8.618 ± 7.5 10.9 -10.3 10.0 -9.6 4.2 -3.6 ± 1.1 0.3 0.8 3.7 -3.0 3.3
4 d 6.885 ± 8.7 16.4 -16.9 14.7 -15.1 7.2 -7.5 ± 2.3 0.2 0.4 6.7 -7.0 3.9

Cambridge jet algorithm

1 a 1.456 ± 20.3 25.6 -21.7 24.1 -21.0 8.7 -5.7 ± 1.4 1.3 4.4 7.1 -2.6 70.9
1 b 5.692 ± 10.6 19.2 -21.1 15.7 -17.4 11.1 -11.9 ± 10.6 0.3 1.9 2.1 -4.8 20.3
1 c 5.753 ± 10.7 20.8 -16.7 18.1 -14.2 10.3 -8.7 ± 6.6 2.2 3.8 6.4 -3.4 13.4
1 d 1.981 ± 16.8 26.2 -28.8 23.0 -25.2 12.6 -13.9 ± 10.7 0.0 0.0 6.4 -8.7 11.2
2 a 3.539 ± 12.3 13.9 -14.3 13.3 -13.6 3.9 -4.3 ± 0.1 2.4 2.2 1.6 -2.3 41.0
2 b 6.443 ± 8.5 12.2 -12.4 11.4 -11.5 4.3 -4.8 ± 0.2 1.0 1.8 3.5 -4.1 16.9
2 c 6.129 ± 9.0 17.5 -16.7 14.8 -13.9 9.4 -9.1 ± 7.8 1.2 1.5 4.6 -4.0 12.3
2 d 3.145 ± 12.8 27.5 -28.9 22.6 -24.0 15.6 -16.1 ± 13.8 0.7 0.8 7.1 -8.1 11.6
3 a 6.023 ± 9.4 17.3 -14.2 15.5 -12.8 7.8 -6.2 ± 4.8 1.4 1.8 5.5 -2.8 13.7
3 b 10.717 ± 7.3 11.8 -12.4 10.5 -10.9 5.5 -5.8 ± 3.1 1.6 1.9 3.6 -4.0 11.5
3 c 8.433 ± 8.0 12.7 -15.3 11.4 -13.5 5.8 -7.3 ± 2.3 1.7 2.9 3.8 -5.9 9.6
3 d 3.708 ± 12.2 20.0 -14.4 18.3 -13.7 8.1 -4.6 ± 1.9 1.7 1.7 7.4 -3.1 10.7
4 a 9.302 ± 7.7 10.2 -11.3 9.2 -10.2 4.3 -5.1 ± 3.3 1.5 1.1 1.6 -3.0 5.3
4 b 9.209 ± 7.5 10.4 -8.9 9.6 -8.3 4.1 -3.2 ± 1.6 1.6 0.5 3.1 -1.6 2.5
4 c 7.673 ± 8.3 12.1 -11.1 10.9 -10.0 5.2 -4.8 ± 3.7 0.1 1.4 3.0 -2.3 4.2
4 d 5.257 ± 10.2 17.4 -19.2 15.9 -17.4 7.1 -8.2 ± 0.5 0.9 0.5 6.9 -8.0 5.2



220 Tables of the Results

�#$#3 �	
 ��<
� ����� �
!���� d2σdijet/(dξ dQ
2)

bin number corresponding Q2 range ξ range
1 a 150 < Q2 < 200GeV2 0.009 < ξ < 0.017

1 b 0.017 < ξ < 0.025

1 c 0.025 < ξ < 0.035

1 d 0.035 < ξ < 0.05

1 e 0.05 < ξ < 0.12

2 a 200 < Q2 < 300GeV2 0.01 < ξ < 0.02

2 b 0.02 < ξ < 0.03

2 c 0.03 < ξ < 0.04

2 d 0.04 < ξ < 0.06

2 e 0.06 < ξ < 0.15

3 a 300 < Q2 < 600GeV2 0.015 < ξ < 0.025

3 b 0.025 < ξ < 0.035

3 c 0.035 < ξ < 0.045

3 d 0.045 < ξ < 0.065

3 e 0.065 < ξ < 0.18

4 a 600 < Q2 < 5000GeV2 0.025 < ξ < 0.045

4 b 0.045 < ξ < 0.065

4 c 0.065 < ξ < 0.1

4 d 0.1 < ξ < 0.3

the dijet cross section d2σdijet/(dξ dQ
2)

single contributions to correlated uncertainty
bin cross statistical total uncorrelated correlated model dep. positron positron LAr hadr. hadroniz.
No. section uncert. uncertainty uncertainty uncertainty detector corr. energy scale polar angle energy scale correct.

(in pb) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (percent)

inclusive k⊥ jet algorithm

1 a 4.147 ± 11.0 24.7 -27.7 19.9 -22.9 14.7 -15.6 ± 13.7 1.9 1.8 4.3 -6.9 6.4
1 b 6.272 ± 9.1 14.9 -13.8 13.2 -12.2 6.9 -6.4 ± 3.4 2.1 2.8 4.7 -3.8 5.6
1 c 6.544 ± 9.8 12.3 -13.2 11.2 -12.0 5.1 -5.6 ± 3.1 3.0 1.2 1.8 -3.0 6.0
1 d 5.059 ± 10.9 14.3 -15.3 13.2 -14.1 5.3 -5.9 ± 1.9 2.3 2.2 3.5 -4.4 5.7
1 e 4.800 ± 11.3 18.4 -17.8 15.1 -14.5 10.6 -10.3 ± 7.9 3.3 5.3 2.9 -1.7 6.7
2 a 6.324 ± 8.8 13.7 -18.1 12.0 -16.0 6.5 -8.6 ± 3.8 3.6 1.2 3.4 -6.5 6.5
2 b 7.309 ± 7.8 10.9 -12.5 10.0 -11.3 4.4 -5.3 ± 2.6 0.3 1.0 3.1 -4.3 5.1
2 c 6.023 ± 8.6 11.7 -11.8 10.5 -10.5 5.2 -5.5 ± 1.1 1.5 3.7 2.8 -3.2 5.3
2 d 5.512 ± 8.9 14.9 -11.9 13.4 -11.0 6.6 -4.6 ± 2.6 1.6 1.9 5.3 -2.4 5.1
2 e 4.186 ± 10.3 17.8 -19.3 14.7 -16.1 10.1 -10.8 ± 8.3 3.1 3.6 3.0 -4.8 8.2
3 a 5.997 ± 9.3 12.7 -15.4 11.9 -14.4 4.5 -5.6 ± 1.5 0.9 1.0 3.8 -5.1 5.7
3 b 7.006 ± 8.3 11.3 -12.4 10.1 -11.1 5.0 -5.6 ± 3.5 0.4 2.1 2.4 -3.4 5.0
3 c 6.104 ± 9.0 16.0 -11.9 14.5 -11.1 6.9 -4.5 ± 1.2 2.2 1.0 6.1 -3.3 4.7
3 d 7.249 ± 8.1 10.1 -10.4 9.0 -9.2 4.7 -4.9 ± 1.9 0.6 3.8 1.2 -1.9 6.6
3 e 6.082 ± 8.8 14.7 -14.3 13.1 -12.7 6.7 -6.5 ± 3.0 1.2 2.4 5.1 -4.9 6.2
4 a 6.077 ± 9.4 15.0 -12.6 13.6 -11.6 6.3 -5.0 ± 2.3 0.6 2.0 5.2 -3.5 6.6
4 b 6.759 ± 8.5 13.3 -11.9 11.7 -10.5 6.3 -5.6 ± 3.8 2.3 1.9 3.8 -2.4 5.9
4 c 8.305 ± 8.0 11.0 -10.2 10.2 -9.5 4.1 -3.5 ± 0.6 0.9 1.0 3.6 -2.8 5.0
4 d 7.520 ± 8.2 10.2 -11.2 9.6 -10.4 3.3 -4.1 ± 0.4 1.3 0.3 2.7 -3.5 6.1
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the dijet cross section d2σdijet/(dξ dQ
2)

single contributions to correlated uncertainty
bin cross statistical total uncorrelated correlated model dep. positron positron LAr hadr. hadroniz.
No. section uncert. uncertainty uncertainty uncertainty detector corr. energy scale polar angle energy scale correct.

(in pb) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (percent)

Aachen jet algorithm

1 a 3.973 ± 10.9 17.4 -17.4 15.4 -15.5 8.2 -8.0 ± 5.4 1.6 2.7 5.1 -4.7 9.5
1 b 6.214 ± 9.4 14.2 -13.7 12.5 -12.1 6.7 -6.3 ± 4.8 0.5 2.4 3.6 -2.9 9.3
1 c 6.473 ± 9.7 14.1 -15.9 12.7 -14.2 6.0 -7.2 ± 4.5 1.1 1.3 3.2 -5.1 11.5
1 d 4.537 ± 11.4 13.9 -14.6 13.0 -13.6 4.8 -5.2 ± 1.1 3.1 1.1 3.0 -3.6 10.2
1 e 4.819 ± 11.3 19.8 -18.8 15.7 -14.7 12.0 -11.6 ± 8.5 3.5 6.9 3.1 -0.6 12.2
2 a 6.020 ± 9.0 14.1 -15.9 12.9 -14.6 5.7 -6.2 ± 0.2 2.3 1.2 4.8 -5.4 9.4
2 b 7.100 ± 7.9 11.7 -11.2 10.8 -10.3 4.5 -4.3 ± 2.5 0.4 0.6 3.4 -3.1 8.9
2 c 5.656 ± 8.8 11.5 -12.5 10.5 -11.2 4.9 -5.5 ± 1.0 1.7 3.1 2.8 -3.8 10.1
2 d 5.484 ± 8.9 12.7 -12.8 11.3 -11.3 5.9 -6.0 ± 3.5 2.1 2.7 2.9 -3.1 10.1
2 e 3.990 ± 10.6 17.3 -18.6 14.5 -15.7 9.4 -10.0 ± 8.1 2.3 2.8 2.8 -4.3 13.2
3 a 5.725 ± 9.7 12.9 -12.7 11.9 -11.8 4.9 -4.7 ± 1.7 1.0 1.8 3.7 -3.5 7.9
3 b 6.695 ± 8.5 11.9 -13.8 10.7 -12.4 5.3 -6.1 ± 4.4 0.6 0.4 2.6 -3.9 8.8
3 c 6.209 ± 9.1 16.0 -11.8 14.4 -10.7 7.1 -5.0 ± 2.6 2.5 2.0 5.5 -2.4 8.6
3 d 6.817 ± 8.2 10.8 -13.3 9.8 -11.8 4.6 -6.0 ± 3.4 1.3 2.1 1.0 -4.0 10.5
3 e 5.925 ± 9.0 18.8 -12.5 16.4 -10.9 9.1 -6.1 ± 1.9 2.8 3.7 7.5 -3.0 11.7
4 a 5.903 ± 9.6 13.6 -14.1 12.3 -12.8 5.7 -6.0 ± 3.4 1.1 2.1 3.7 -4.1 9.2
4 b 6.241 ± 8.8 12.0 -11.9 10.9 -10.8 5.1 -4.9 ± 3.3 1.2 1.4 3.0 -2.6 8.2
4 c 7.877 ± 8.1 11.1 -10.5 10.2 -9.7 4.4 -4.1 ± 2.1 1.0 1.3 3.2 -2.7 8.6
4 d 7.121 ± 8.5 10.7 -11.6 10.1 -10.8 3.7 -4.3 ± 0.5 1.1 0.6 3.1 -3.8 9.4

exclusive k⊥ jet algorithm

1 a 1.224 ± 20.2 23.0 -31.2 21.9 -28.6 7.1 -12.6 ± 4.0 2.7 3.8 3.3 -10.9 55.7
1 b 3.033 ± 14.0 24.1 -21.3 21.4 -18.8 11.1 -10.0 ± 7.9 2.8 2.8 6.5 -4.4 32.5
1 c 5.397 ± 11.0 17.3 -18.6 15.2 -16.4 8.3 -8.7 ± 6.3 1.6 2.2 4.5 -5.2 21.5
1 d 4.248 ± 11.8 17.3 -17.8 16.0 -16.4 6.7 -7.0 ± 2.1 1.8 1.1 5.8 -6.2 13.0
1 e 5.920 ± 9.5 14.9 -14.4 12.9 -12.5 7.5 -7.3 ± 4.4 3.1 3.3 3.7 -3.2 9.8
2 a 3.843 ± 12.2 22.8 -22.7 20.0 -19.8 11.0 -11.0 ± 2.8 6.2 4.4 7.4 -7.3 40.0
2 b 4.146 ± 10.7 15.2 -16.4 13.4 -14.5 7.2 -7.8 ± 6.2 1.9 0.5 2.7 -3.9 22.6
2 c 5.003 ± 9.7 16.6 -13.7 14.9 -12.0 7.5 -6.6 ± 4.8 3.2 2.0 4.2 -2.1 14.6
2 d 5.384 ± 8.9 11.9 -13.2 10.9 -11.9 4.8 -5.5 ± 0.3 1.6 2.9 3.2 -4.2 8.9
2 e 6.483 ± 8.2 14.5 -11.9 12.9 -10.7 6.6 -5.3 ± 3.6 1.1 1.3 5.1 -3.1 8.8
3 a 5.897 ± 10.4 14.5 -14.7 13.8 -13.8 4.7 -4.9 ± 0.5 2.4 0.4 3.8 -4.0 16.6
3 b 7.227 ± 8.5 11.6 -12.1 10.5 -10.9 4.8 -5.2 ± 1.4 2.2 2.2 3.1 -3.7 11.4
3 c 6.841 ± 8.8 17.9 -13.3 15.8 -11.7 8.5 -6.4 ± 4.9 1.0 2.1 6.4 -3.1 7.6
3 d 8.262 ± 7.6 11.8 -10.5 10.8 -9.7 4.6 -3.9 ± 0.3 1.7 1.1 3.8 -2.9 7.4
3 e 8.173 ± 7.4 14.0 -13.2 12.2 -11.4 6.8 -6.6 ± 3.7 1.2 2.5 4.7 -4.5 7.4
4 a 8.185 ± 8.3 12.6 -10.5 11.3 -9.6 5.4 -4.4 ± 0.3 1.8 2.8 4.0 -2.4 8.0
4 b 8.340 ± 7.8 9.2 -9.2 8.7 -8.8 2.8 -2.9 ± 0.7 0.9 0.8 2.0 -2.0 5.0
4 c 9.484 ± 7.2 9.5 -10.8 8.8 -9.9 3.5 -4.4 ± 1.4 1.0 0.5 2.6 -3.7 4.8
4 d 10.207 ± 6.9 10.3 -9.6 9.5 -8.9 4.1 -3.7 ± 0.0 0.7 1.0 3.6 -3.1 5.3

Cambridge jet algorithm

1 a 0.861 ± 24.8 31.4 -31.9 28.8 -29.1 12.5 -13.0 ± 11.7 1.7 2.2 2.8 -4.6 56.3
1 b 2.743 ± 14.5 21.3 -23.7 18.7 -20.8 10.3 -11.4 ± 7.9 2.1 4.2 4.5 -6.5 33.1
1 c 3.815 ± 13.7 23.9 -18.9 21.8 -17.0 10.0 -8.3 ± 5.1 3.3 3.2 7.1 -4.5 24.5
1 d 3.141 ± 13.9 18.0 -18.0 16.6 -16.7 7.0 -6.8 ± 2.2 4.8 1.6 4.0 -3.7 14.7
1 e 4.088 ± 12.6 22.2 -20.6 18.3 -16.8 12.5 -11.8 ± 8.3 3.1 6.7 5.5 -3.7 13.2
2 a 3.359 ± 13.0 23.2 -17.6 20.9 -16.0 10.2 -7.2 ± 3.7 2.9 3.4 8.2 -4.0 40.8
2 b 4.131 ± 11.1 14.3 -13.4 13.3 -12.5 5.3 -4.7 ± 2.6 2.2 1.6 3.5 -2.5 25.2
2 c 3.626 ± 11.4 15.4 -18.1 14.0 -16.1 6.4 -8.1 ± 4.2 2.7 2.4 2.9 -5.8 16.7
2 d 4.303 ± 10.3 16.5 -18.4 14.0 -15.8 8.7 -9.5 ± 5.3 4.5 3.6 3.6 -5.2 12.9
2 e 3.850 ± 11.4 20.0 -18.6 17.0 -15.7 10.6 -10.0 ± 9.4 1.1 0.6 4.4 -2.8 13.4
3 a 5.998 ± 10.4 13.3 -16.0 12.2 -14.6 5.4 -6.5 ± 3.3 3.4 1.2 1.7 -4.0 17.3
3 b 6.663 ± 9.0 13.1 -13.1 11.9 -12.0 5.4 -5.2 ± 1.0 3.0 1.2 4.0 -3.8 12.1
3 c 5.769 ± 9.9 15.9 -14.6 13.9 -12.6 7.8 -7.3 ± 3.9 2.6 4.3 4.2 -3.3 9.9
3 d 6.216 ± 9.0 12.6 -13.0 11.5 -11.8 5.1 -5.4 ± 0.1 2.7 1.8 3.7 -4.1 11.0
3 e 5.784 ± 9.3 15.2 -15.3 13.5 -13.5 7.1 -7.3 ± 4.2 1.8 2.5 4.6 -4.9 10.3
4 a 7.846 ± 8.6 12.2 -12.3 11.2 -11.3 4.8 -4.9 ± 1.9 0.3 1.7 3.8 -4.0 8.7
4 b 7.866 ± 8.2 10.4 -9.3 9.9 -8.9 3.2 -2.7 ± 0.3 1.1 0.8 2.5 -1.7 6.3
4 c 8.867 ± 7.8 10.2 -9.7 9.6 -9.1 3.6 -3.3 ± 0.8 0.9 0.2 3.0 -2.6 6.7
4 d 8.229 ± 7.7 9.7 -10.0 9.2 -9.3 3.3 -3.5 ± 0.8 0.6 0.3 2.7 -2.9 6.0
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bin number corresponding Q2 range xp range
1 a 150 < Q2 < 200GeV2 0.05 < xp < 0.13

1 b 0.13 < xp < 0.20

1 c 0.20 < xp < 0.30

1 d 0.30 < xp < 0.45

2 a 200 < Q2 < 300GeV2 0.07 < xp < 0.15

2 b 0.15 < xp < 0.25

2 c 0.25 < xp < 0.35

2 d 0.35 < xp < 0.6

3 a 300 < Q2 < 600GeV2 0.08 < xp < 0.20

3 b 0.20 < xp < 0.35

3 c 0.35 < xp < 0.50

3 d 0.50 < xp < 0.80

4 a 600 < Q2 < 5000GeV2 0.18 < xp < 0.35

4 b 0.35 < xp < 0.55

4 c 0.55 < xp < 0.70

4 d 0.70 < xp < 0.95

the dijet cross section d2σdijet/(dxp dQ
2)

single contributions to correlated uncertainty
bin cross statistical total uncorrelated correlated model dep. positron positron LAr hadr. hadroniz.
No. section uncert. uncertainty uncertainty uncertainty detector corr. energy scale polar angle energy scale correct.

(in pb) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (percent)

inclusive k⊥ jet algorithm

1 a 6.522 ± 9.5 13.6 -14.0 12.4 -12.8 5.6 -5.8 ± 0.6 3.3 0.8 4.2 -4.4 6.0
1 b 6.139 ± 9.3 13.9 -14.7 11.8 -12.6 7.2 -7.6 ± 5.8 2.1 2.9 1.9 -3.0 4.8
1 c 9.628 ± 7.8 19.1 -19.3 15.1 -15.3 11.7 -11.7 ± 10.1 1.6 3.4 4.2 -4.2 5.5
1 d 3.579 ± 12.3 19.0 -20.0 17.2 -18.0 8.2 -8.8 ± 4.8 3.4 2.8 4.7 -5.7 8.8
2 a 5.070 ± 9.3 17.3 -16.3 14.5 -13.5 9.6 -9.1 ± 8.1 1.4 1.8 4.3 -3.1 7.0
2 b 8.692 ± 7.3 11.2 -9.6 10.2 -8.9 4.4 -3.5 ± 2.2 0.3 0.6 3.5 -2.3 4.2
2 c 8.209 ± 7.4 10.1 -12.9 9.0 -11.4 4.6 -6.0 ± 2.8 2.2 1.4 2.0 -4.4 6.4
2 d 6.717 ± 8.3 14.9 -18.5 13.1 -16.2 7.2 -8.9 ± 4.4 3.2 0.7 4.5 -6.8 6.5
3 a 5.508 ± 9.3 16.0 -17.4 13.0 -14.2 9.4 -10.0 ± 7.2 1.0 4.8 3.1 -4.6 6.1
3 b 11.638 ± 6.5 9.1 -12.1 8.4 -11.0 3.4 -5.1 ± 1.3 1.3 0.8 2.3 -4.4 4.2
3 c 11.141 ± 6.7 9.8 -9.0 9.1 -8.5 3.8 -3.1 ± 0.6 0.4 0.7 3.3 -2.5 5.8
3 d 4.388 ± 10.3 19.5 -16.5 17.3 -14.6 9.1 -7.5 ± 3.7 3.1 3.0 6.9 -4.7 8.7
4 a 5.268 ± 10.2 12.6 -15.2 12.0 -14.0 4.1 -5.9 ± 0.8 0.9 0.8 3.5 -5.5 4.3
4 b 10.025 ± 7.1 12.6 -12.5 10.7 -10.6 6.6 -6.6 ± 5.4 1.1 0.9 3.1 -3.1 4.6
4 c 7.368 ± 8.2 13.5 -11.1 12.0 -9.9 6.2 -4.9 ± 3.5 1.4 1.7 4.5 -2.3 5.5
4 d 6.633 ± 8.9 14.8 -11.2 13.6 -10.5 5.8 -4.0 ± 1.3 2.6 0.7 4.7 -2.0 10.2
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the dijet cross section d2σdijet/(dxp dQ
2)

single contributions to correlated uncertainty
bin cross statistical total uncorrelated correlated model dep. positron positron LAr hadr. hadroniz.
No. section uncert. uncertainty uncertainty uncertainty detector corr. energy scale polar angle energy scale correct.

(in pb) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (percent)

Aachen jet algorithm

1 a 6.259 ± 9.7 13.7 -13.8 12.2 -12.3 6.1 -6.1 ± 1.8 3.1 2.8 3.7 -3.8 11.4
1 b 6.415 ± 9.2 16.6 -17.2 13.9 -14.4 9.2 -9.3 ± 7.6 2.3 2.9 3.3 -3.6 9.4
1 c 8.555 ± 8.1 17.5 -16.3 13.7 -12.5 10.9 -10.5 ± 8.6 1.8 5.2 3.7 -1.9 9.3
1 d 4.299 ± 11.5 15.8 -18.4 14.4 -16.9 6.4 -7.4 ± 0.2 4.2 2.1 4.1 -5.5 12.9
2 a 4.654 ± 9.6 15.3 -14.7 13.2 -12.7 7.9 -7.6 ± 6.7 0.8 1.6 3.3 -2.6 12.1
2 b 8.488 ± 7.3 12.3 -10.5 11.2 -9.6 5.1 -4.3 ± 1.8 1.6 0.8 4.2 -3.1 9.0
2 c 8.394 ± 7.4 8.8 -11.7 8.1 -10.6 3.4 -5.0 ± 1.5 1.8 1.4 1.2 -3.9 10.3
2 d 6.044 ± 8.6 16.4 -15.7 14.8 -14.4 7.1 -6.1 ± 1.9 1.9 0.8 6.4 -5.3 9.6
3 a 5.638 ± 9.4 14.7 -15.0 12.8 -13.0 7.1 -7.4 ± 4.2 1.7 3.6 3.9 -4.4 11.1
3 b 11.426 ± 6.6 10.5 -12.6 9.5 -11.3 4.5 -5.6 ± 2.3 1.3 1.0 3.2 -4.6 8.6
3 c 10.341 ± 6.9 11.6 -8.9 10.4 -8.2 5.0 -3.4 ± 0.6 1.5 1.7 4.1 -2.1 8.7
3 d 4.324 ± 10.4 15.6 -15.8 14.1 -14.3 6.8 -6.8 ± 3.4 3.1 1.6 4.5 -4.5 12.1
4 a 5.098 ± 10.5 14.0 -15.0 13.0 -13.8 5.3 -5.9 ± 3.1 0.4 0.4 3.9 -4.7 8.3
4 b 8.925 ± 7.6 12.9 -12.1 11.0 -10.3 6.7 -6.3 ± 5.4 0.7 1.5 3.3 -2.5 7.8
4 c 7.371 ± 8.2 12.3 -11.1 11.3 -10.3 4.9 -4.0 ± 0.0 1.6 1.5 4.1 -3.0 7.8
4 d 6.341 ± 9.2 12.4 -14.5 10.9 -12.8 5.8 -6.9 ± 3.3 3.8 1.7 1.6 -4.1 11.8

exclusive k⊥ jet algorithm

1 a 7.100 ± 8.6 18.5 -13.5 15.9 -11.5 9.4 -7.2 ± 4.7 2.7 3.4 6.7 -2.9 9.8
1 b 5.829 ± 9.9 17.3 -19.9 14.3 -16.8 9.6 -10.7 ± 8.6 0.7 2.5 3.1 -5.7 14.8
1 c 5.464 ± 11.7 22.0 -20.6 18.7 -17.2 11.7 -11.3 ± 8.6 3.0 4.3 5.8 -4.9 28.4
1 d 0.712 ± 25.7 31.3 -37.8 29.9 -35.4 9.2 -13.2 ± 0.4 6.6 5.3 3.3 -10.0 96.3
2 a 7.495 ± 7.7 12.1 -11.5 11.1 -10.5 4.7 -4.7 ± 2.7 0.2 0.7 3.4 -3.5 7.4
2 b 7.192 ± 7.8 12.8 -11.4 11.6 -10.6 5.4 -4.3 ± 0.1 1.5 1.3 4.8 -3.5 10.7
2 c 5.189 ± 9.8 13.1 -13.5 12.3 -12.7 4.5 -4.8 ± 1.3 2.1 1.4 3.1 -3.6 21.0
2 d 3.467 ± 12.1 20.6 -19.9 18.3 -17.5 9.5 -9.5 ± 4.9 4.8 1.7 6.2 -6.1 43.5
3 a 8.098 ± 7.8 14.0 -12.8 12.5 -11.5 6.2 -5.7 ± 1.3 1.0 2.1 5.4 -4.8 7.0
3 b 11.820 ± 6.3 11.2 -10.7 10.4 -9.7 4.1 -4.4 ± 0.0 0.6 1.5 3.4 -3.8 7.6
3 c 9.126 ± 7.5 13.2 -9.3 11.8 -8.6 5.8 -3.5 ± 0.6 1.5 2.0 5.0 -2.0 10.0
3 d 7.847 ± 8.7 15.1 -14.8 13.4 -13.0 7.0 -7.2 ± 2.1 5.1 1.3 3.9 -4.2 17.5
4 a 5.682 ± 9.4 13.6 -15.7 12.5 -14.3 5.3 -6.5 ± 0.8 1.4 1.0 4.7 -6.0 3.6
4 b 9.294 ± 7.3 11.6 -11.3 10.2 -10.0 5.4 -5.4 ± 4.0 0.8 1.2 3.0 -2.9 3.8
4 c 8.702 ± 7.7 12.6 -9.5 11.3 -8.7 5.7 -3.9 ± 1.9 1.9 1.7 4.4 -1.6 3.2
4 d 12.454 ± 6.5 8.7 -8.9 8.0 -8.2 3.4 -3.7 ± 1.3 1.7 0.4 2.1 -2.5 10.8

Cambridge jet algorithm

1 a 5.002 ± 11.1 19.3 -17.2 16.5 -14.5 10.2 -9.3 ± 8.0 3.3 2.6 4.4 -1.9 13.4
1 b 4.459 ± 11.8 16.8 -19.7 15.2 -17.9 7.2 -8.2 ± 3.7 1.9 3.0 4.9 -6.2 15.0
1 c 3.722 ± 13.8 26.7 -25.1 22.1 -20.4 14.9 -14.5 ± 12.6 3.2 4.6 5.4 -4.3 28.2
1 d 0.740 ± 26.6 32.2 -33.9 30.1 -31.2 11.5 -13.2 ± 8.3 7.6 0.1 2.3 -6.8 104.2
2 a 4.490 ± 10.4 20.1 -21.3 16.0 -17.2 12.0 -12.6 ± 11.3 1.1 3.0 2.2 -4.3 12.5
2 b 6.488 ± 8.6 12.7 -12.7 11.7 -11.7 4.9 -5.0 ± 1.2 0.2 1.7 4.2 -4.3 13.3
2 c 4.057 ± 11.2 15.6 -15.1 14.6 -14.2 5.6 -5.3 ± 3.0 1.4 0.3 4.3 -3.8 21.0
2 d 3.357 ± 12.5 21.0 -16.5 19.1 -15.3 8.7 -6.4 ± 1.2 4.0 2.9 6.9 -3.6 45.8
3 a 5.275 ± 10.0 16.1 -14.6 13.7 -12.3 8.5 -7.9 ± 4.5 2.5 5.1 4.2 -2.8 9.8
3 b 9.851 ± 7.3 9.2 -14.7 8.6 -13.2 3.3 -6.4 ± 1.4 1.1 1.2 2.0 -5.9 10.7
3 c 8.100 ± 8.3 15.5 -11.1 13.7 -9.8 7.3 -5.3 ± 1.7 2.0 3.5 5.7 -2.5 13.0
3 d 8.145 ± 8.5 13.7 -15.3 12.2 -13.7 6.1 -6.7 ± 1.2 4.6 0.7 3.5 -4.5 16.5
4 a 4.605 ± 10.9 14.4 -16.6 13.3 -15.2 5.5 -6.8 ± 2.6 2.2 0.4 4.0 -5.6 5.3
4 b 8.820 ± 7.7 13.7 -11.6 12.2 -10.2 6.3 -5.5 ± 4.4 0.4 0.5 4.1 -2.8 4.7
4 c 7.421 ± 8.3 11.1 -10.2 10.2 -9.5 4.5 -3.9 ± 1.8 1.8 1.6 2.9 -2.0 4.1
4 d 11.991 ± 6.7 10.9 -10.8 9.4 -9.3 5.5 -5.5 ± 4.4 1.7 0.2 2.5 -2.4 11.7
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bin number corresponding Q2 range xBj range
1 a 150 < Q2 < 200GeV2 0.003 < xBj < 0.004

1 b 0.004 < xBj < 0.0055

1 c 0.0055 < xBj < 0.007

1 d 0.007 < xBj < 0.01

2 a 200 < Q2 < 300GeV2 0.004 < xBj < 0.0055

2 b 0.0055 < xBj < 0.0075

2 c 0.0075 < xBj < 0.01

2 d 0.01 < xBj < 0.015

3 a 300 < Q2 < 600GeV2 0.006 < xBj < 0.009

3 b 0.009 < xBj < 0.012

3 c 0.012 < xBj < 0.017

3 d 0.017 < xBj < 0.03

4 a 600 < Q2 < 5000GeV2 0.012 < xBj < 0.023

4 b 0.023 < xBj < 0.035

4 c 0.035 < xBj < 0.06

4 d 0.06 < xBj < 0.2

the dijet cross section d2σdijet/(dxBj dQ
2)

single contributions to correlated uncertainty
bin cross statistical total uncorrelated correlated model dep. positron positron LAr hadr. hadroniz.
No. section uncert. uncertainty uncertainty uncertainty detector corr. energy scale polar angle energy scale correct.

(in pb) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (percent)

inclusive k⊥ jet algorithm

1 a 6.462 ± 8.7 19.5 -20.9 15.7 -17.1 11.5 -11.9 ± 10.1 3.3 1.3 3.9 -5.1 4.2
1 b 8.505 ± 7.7 15.7 -14.6 13.5 -12.4 8.2 -7.6 ± 5.8 2.2 1.5 4.9 -3.8 5.9
1 c 5.500 ± 10.5 15.2 -17.1 12.7 -14.5 8.3 -9.1 ± 3.5 3.5 5.8 2.9 -4.7 6.9
1 d 5.876 ± 11.1 15.2 -15.0 12.9 -12.6 8.1 -8.2 ± 0.5 2.4 7.1 2.5 -2.8 7.6
2 a 5.934 ± 8.8 12.6 -13.9 11.1 -12.4 5.8 -6.3 ± 3.0 1.0 3.2 3.4 -4.1 4.2
2 b 8.896 ± 7.1 10.6 -11.7 9.6 -10.5 4.4 -5.2 ± 2.2 1.6 0.9 3.0 -4.0 5.9
2 c 8.057 ± 7.5 13.4 -13.6 11.9 -12.0 6.2 -6.3 ± 2.3 3.2 1.2 4.4 -4.6 6.2
2 d 6.328 ± 8.2 12.6 -15.1 11.2 -13.3 5.9 -7.1 ± 4.0 0.9 1.7 3.6 -5.3 7.3
3 a 6.346 ± 8.9 11.6 -13.0 10.8 -12.1 4.2 -4.9 ± 2.3 0.6 0.1 3.1 -4.0 4.5
3 b 9.304 ± 7.4 10.8 -13.1 9.5 -11.5 5.2 -6.3 ± 0.2 1.8 3.7 2.9 -4.5 4.5
3 c 10.764 ± 6.8 11.1 -10.5 10.1 -9.6 4.6 -4.2 ± 0.1 1.0 0.7 4.1 -3.7 6.3
3 d 6.747 ± 8.1 13.3 -11.4 12.1 -10.4 5.6 -4.6 ± 1.8 1.1 2.2 4.4 -3.2 7.7
4 a 7.989 ± 8.2 14.9 -11.3 13.4 -10.3 6.5 -4.6 ± 1.3 2.7 0.5 5.5 -3.1 4.6
4 b 7.345 ± 8.2 12.8 -11.6 11.6 -10.7 5.3 -4.6 ± 1.2 1.0 1.3 4.7 -3.8 6.2
4 c 8.333 ± 7.9 11.5 -11.7 10.3 -10.4 5.0 -5.2 ± 3.4 1.3 1.0 3.0 -3.3 6.0
4 d 5.891 ± 9.4 12.6 -11.6 11.5 -10.7 5.3 -4.6 ± 3.4 2.2 0.6 2.9 -1.5 7.1
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the dijet cross section d2σdijet/(dxBj dQ
2)

single contributions to correlated uncertainty
bin cross statistical total uncorrelated correlated model dep. positron positron LAr hadr. hadroniz.
No. section uncert. uncertainty uncertainty uncertainty detector corr. energy scale polar angle energy scale correct.

(in pb) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (percent)

Aachen jet algorithm

1 a 6.586 ± 8.7 18.1 -20.2 14.7 -16.7 10.6 -11.3 ± 9.3 2.6 1.7 3.7 -5.4 8.3
1 b 7.997 ± 7.9 15.7 -15.0 13.2 -12.7 8.4 -8.1 ± 6.3 2.3 1.8 4.6 -3.9 9.9
1 c 5.325 ± 10.7 16.0 -14.8 13.5 -12.5 8.5 -7.9 ± 0.5 3.3 6.4 4.2 -2.8 11.3
1 d 6.035 ± 11.2 14.7 -14.0 12.7 -11.9 7.5 -7.4 ± 0.9 2.7 6.5 1.9 -1.5 12.9
2 a 5.803 ± 8.9 13.6 -14.4 11.9 -12.6 6.7 -6.8 ± 4.5 0.5 3.0 3.7 -3.8 8.2
2 b 8.832 ± 7.2 10.9 -11.1 9.9 -10.0 4.6 -4.8 ± 1.0 1.9 1.5 3.5 -3.7 9.7
2 c 7.626 ± 7.7 14.1 -12.2 12.6 -11.0 6.4 -5.3 ± 1.8 2.8 1.0 5.1 -3.8 10.4
2 d 5.861 ± 8.5 12.4 -15.8 10.8 -13.9 5.9 -7.6 ± 4.9 0.8 1.3 2.5 -5.4 12.1
3 a 6.351 ± 9.0 13.6 -12.0 12.3 -11.1 5.6 -4.7 ± 3.1 0.4 0.7 4.4 -3.1 8.4
3 b 8.870 ± 7.7 11.2 -13.2 9.9 -11.6 5.4 -6.1 ± 1.1 1.4 3.8 3.1 -4.2 8.2
3 c 10.339 ± 6.9 10.8 -10.0 9.9 -9.2 4.4 -3.8 ± 0.2 0.4 1.0 4.0 -3.3 10.0
3 d 6.463 ± 8.3 13.6 -12.4 12.4 -11.2 5.6 -5.3 ± 2.3 0.5 2.0 4.5 -4.0 12.0
4 a 7.640 ± 8.3 12.2 -12.0 11.1 -11.0 5.0 -4.9 ± 1.4 2.4 1.2 3.7 -3.6 7.8
4 b 7.022 ± 8.4 12.5 -11.7 11.4 -10.8 5.1 -4.5 ± 1.6 0.9 1.4 4.3 -3.6 9.4
4 c 7.522 ± 8.3 11.2 -11.9 10.2 -10.8 4.5 -5.0 ± 2.8 1.3 1.0 2.8 -3.5 8.5
4 d 5.736 ± 9.5 11.3 -11.8 10.5 -11.0 4.0 -4.3 ± 2.0 1.9 1.3 2.1 -2.7 9.7

exclusive k⊥ jet algorithm

1 a 5.008 ± 10.1 19.0 -21.6 16.1 -18.4 10.1 -11.3 ± 8.1 1.9 1.8 5.2 -7.3 16.7
1 b 6.633 ± 8.9 14.8 -16.4 13.1 -14.5 6.9 -7.8 ± 4.6 2.4 0.4 4.3 -5.5 18.7
1 c 3.970 ± 12.3 17.8 -16.9 16.2 -15.5 7.4 -6.8 ± 0.7 1.9 3.7 5.9 -5.1 22.8
1 d 4.509 ± 13.1 20.9 -19.1 17.2 -15.7 11.8 -10.9 ± 1.4 5.4 9.0 5.0 -2.2 25.9
2 a 5.208 ± 9.7 18.6 -14.1 16.3 -12.3 8.9 -6.9 ± 1.8 3.9 3.9 6.6 -3.4 14.9
2 b 7.835 ± 7.8 14.0 -14.7 12.3 -12.9 6.6 -7.0 ± 3.7 2.9 1.1 4.3 -4.9 16.3
2 c 6.509 ± 8.4 12.9 -13.5 11.6 -12.0 5.7 -6.2 ± 1.6 4.0 1.0 3.3 -4.1 20.0
2 d 5.279 ± 8.9 12.7 -13.5 11.5 -12.1 5.5 -5.9 ± 0.7 3.1 2.3 3.5 -4.2 19.7
3 a 6.122 ± 9.3 14.0 -12.4 13.1 -11.7 4.8 -4.2 ± 1.5 0.2 1.1 4.2 -3.4 11.7
3 b 9.548 ± 7.7 17.2 -14.6 14.7 -12.3 8.9 -7.9 ± 4.6 3.4 3.0 5.9 -4.3 10.6
3 c 12.862 ± 6.3 12.5 -11.3 11.1 -10.0 5.7 -5.2 ± 1.9 1.5 1.3 4.8 -4.1 10.9
3 d 9.118 ± 7.1 11.3 -10.2 10.1 -9.1 4.9 -4.7 ± 0.6 1.8 2.8 3.2 -2.9 10.2
4 a 9.179 ± 7.7 11.9 -11.5 10.8 -10.5 5.0 -4.7 ± 0.9 1.5 1.9 4.1 -3.7 5.6
4 b 8.962 ± 7.4 11.3 -9.7 10.3 -8.8 4.8 -4.1 ± 1.7 2.2 1.2 3.5 -2.3 5.8
4 c 10.703 ± 7.0 9.0 -11.0 8.4 -10.0 3.1 -4.5 ± 0.2 1.0 0.7 2.4 -4.0 5.7
4 d 8.335 ± 7.6 11.3 -9.9 10.2 -9.0 4.8 -4.0 ± 2.6 1.6 0.4 3.4 -2.1 7.1

Cambridge jet algorithm

1 a 3.795 ± 12.2 24.3 -26.5 19.6 -21.5 14.5 -15.4 ± 13.6 2.1 2.3 3.5 -6.4 21.4
1 b 4.807 ± 10.9 18.5 -19.8 15.8 -16.9 9.7 -10.4 ± 7.6 1.6 3.3 4.5 -5.8 22.3
1 c 2.543 ± 16.0 26.8 -20.0 23.0 -16.8 13.8 -10.9 ± 1.5 4.7 9.5 8.5 -0.7 26.5
1 d 3.500 ± 15.5 20.2 -20.5 18.0 -18.3 9.0 -9.3 ± 2.3 2.4 6.9 4.6 -5.1 28.2
2 a 3.883 ± 11.4 19.3 -18.6 16.7 -16.2 9.5 -9.2 ± 4.9 2.9 4.6 5.9 -5.4 19.2
2 b 6.338 ± 9.1 16.2 -14.9 14.2 -13.0 7.9 -7.3 ± 2.7 4.6 2.2 5.1 -4.2 21.1
2 c 4.908 ± 9.8 16.2 -14.1 14.5 -12.5 7.3 -6.6 ± 3.1 4.4 1.6 4.4 -3.1 22.3
2 d 4.193 ± 10.4 15.4 -17.7 13.2 -15.3 7.9 -8.9 ± 6.2 2.2 3.1 2.7 -4.9 23.5
3 a 4.729 ± 10.8 14.4 -14.5 13.6 -13.7 4.9 -4.8 ± 1.5 0.7 0.9 4.2 -4.1 14.7
3 b 8.110 ± 8.5 14.4 -16.0 12.1 -13.6 7.7 -8.6 ± 1.7 3.4 5.2 3.9 -5.4 13.9
3 c 10.917 ± 7.2 13.6 -13.8 12.0 -12.2 6.4 -6.3 ± 3.8 1.1 1.1 4.7 -4.6 13.0
3 d 8.043 ± 7.9 11.2 -11.2 10.2 -10.0 4.7 -4.8 ± 0.7 2.5 2.4 2.8 -2.9 11.1
4 a 7.739 ± 8.6 12.6 -11.1 11.7 -10.4 4.8 -3.9 ± 0.3 1.4 0.5 4.3 -3.2 6.5
4 b 8.848 ± 7.7 11.9 -10.7 10.7 -9.7 5.1 -4.4 ± 2.2 1.6 1.1 3.9 -2.9 6.8
4 c 9.481 ± 7.5 10.0 -10.2 9.4 -9.5 3.4 -3.8 ± 1.1 0.4 0.8 2.7 -3.2 6.9
4 d 7.443 ± 8.2 10.4 -10.2 9.5 -9.4 4.1 -4.0 ± 2.7 1.7 0.2 2.1 -1.8 8.2
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bin number corresponding Q2 range
1 150 < Q2 < 200GeV2

2 200 < Q2 < 300GeV2

3 300 < Q2 < 600GeV2

4 600 < Q2 < 5000GeV2

letter corresponding y range
a 0.2 < y < 0.3

b 0.3 < y < 0.4

c 0.4 < y < 0.5

d 0.5 < y < 0.6

the dijet cross section d2σdijet/(dy dQ
2)

single contributions to correlated uncertainty
bin cross statistical total uncorrelated correlated model dep. positron positron LAr hadr. hadroniz.
No. section uncert. uncertainty uncertainty uncertainty detector corr. energy scale polar angle energy scale correct.

(in pb) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (percent)

inclusive k⊥ jet algorithm

1 a 8.403 ± 9.5 14.4 -13.1 12.2 -11.0 7.7 -7.1 ± 4.5 2.9 4.4 2.9 -0.8 7.6
1 b 7.183 ± 8.5 12.5 -18.2 11.4 -16.2 5.2 -8.2 ± 2.3 1.8 1.7 3.6 -7.3 6.6
1 c 5.646 ± 9.1 16.6 -16.3 14.2 -14.0 8.5 -8.3 ± 6.8 0.9 1.6 4.6 -4.1 5.1
1 d 5.470 ± 9.5 17.9 -18.6 14.8 -15.6 10.1 -10.2 ± 8.7 1.0 3.1 3.7 -4.0 4.0
2 a 9.299 ± 6.9 11.8 -12.9 10.3 -11.3 5.8 -6.4 ± 3.8 1.6 1.6 3.6 -4.4 7.4
2 b 8.245 ± 7.4 11.7 -13.5 10.7 -12.2 4.5 -5.7 ± 1.4 1.1 0.2 3.8 -5.2 6.0
2 c 6.272 ± 8.4 12.5 -11.9 11.3 -10.8 5.3 -5.0 ± 2.8 0.8 1.3 3.9 -3.5 5.3
2 d 6.046 ± 8.9 12.1 -14.3 11.0 -13.0 4.9 -6.1 ± 3.6 1.0 0.0 2.9 -4.6 4.0
3 a 10.099 ± 6.6 10.8 -9.0 9.9 -8.3 4.4 -3.6 ± 0.8 0.9 1.6 3.7 -2.6 7.4
3 b 8.959 ± 7.5 12.3 -12.7 11.0 -11.4 5.4 -5.5 ± 0.3 0.5 2.4 4.5 -4.6 6.0
3 c 8.512 ± 7.7 11.1 -13.6 10.2 -12.3 4.4 -5.7 ± 0.9 1.4 1.6 3.5 -5.1 4.5
3 d 5.805 ± 9.5 12.6 -13.5 11.6 -12.4 5.0 -5.3 ± 2.3 2.5 1.7 3.0 -3.4 4.2
4 a 9.624 ± 7.4 11.7 -11.7 10.6 -10.6 4.9 -5.0 ± 0.9 1.6 1.2 4.2 -4.2 7.4
4 b 7.384 ± 8.2 11.5 -9.6 10.7 -9.2 4.2 -3.0 ± 1.2 0.6 0.9 3.6 -2.1 5.7
4 c 6.266 ± 8.9 13.4 -11.9 12.2 -11.0 5.4 -4.4 ± 2.1 1.2 0.7 4.5 -3.3 5.2
4 d 6.359 ± 9.3 13.0 -12.0 11.7 -10.8 5.7 -5.2 ± 2.9 1.0 2.9 3.6 -2.6 4.5
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the dijet cross section d2σdijet/(dy dQ
2)

single contributions to correlated uncertainty
bin cross statistical total uncorrelated correlated model dep. positron positron LAr hadr. hadroniz.
No. section uncert. uncertainty uncertainty uncertainty detector corr. energy scale polar angle energy scale correct.

(in pb) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (percent)

Aachen jet algorithm

1 a 8.473 ± 9.5 14.7 -13.1 12.6 -11.0 7.7 -7.0 ± 4.4 3.1 4.3 3.2 0.2 13.0
1 b 6.978 ± 8.7 12.8 -14.6 11.6 -13.1 5.4 -6.5 ± 1.6 1.6 2.4 4.1 -5.4 10.8
1 c 5.324 ± 9.4 16.1 -16.0 13.8 -13.8 8.3 -8.1 ± 6.8 0.4 1.4 4.2 -3.9 8.9
1 d 5.507 ± 9.5 17.0 -19.7 14.2 -16.7 9.4 -10.3 ± 8.2 1.0 2.3 3.6 -5.6 8.0
2 a 8.453 ± 7.1 11.5 -13.0 10.1 -11.3 5.6 -6.3 ± 3.8 1.7 1.5 3.0 -4.2 12.2
2 b 8.064 ± 7.5 11.7 -12.0 10.7 -11.0 4.7 -4.8 ± 0.7 1.3 1.1 4.1 -4.2 10.2
2 c 6.414 ± 8.3 12.3 -11.8 11.1 -10.7 5.2 -4.9 ± 2.8 0.7 1.5 3.8 -3.3 9.2
2 d 5.820 ± 9.1 13.9 -14.3 12.4 -12.9 6.2 -6.3 ± 4.3 1.0 0.5 4.0 -4.2 7.6
3 a 9.770 ± 6.7 11.4 -9.4 10.3 -8.6 4.7 -3.8 ± 1.3 1.0 1.3 3.9 -2.8 11.7
3 b 8.231 ± 7.8 11.3 -13.2 10.3 -11.9 4.7 -5.7 ± 0.1 0.5 2.5 3.7 -4.9 9.8
3 c 8.476 ± 7.8 12.6 -12.2 11.5 -11.2 5.1 -5.0 ± 0.5 1.1 1.7 4.4 -4.2 7.9
3 d 5.761 ± 9.7 13.7 -12.7 12.5 -11.8 5.5 -4.7 ± 2.7 1.9 1.3 4.0 -2.7 8.1
4 a 9.320 ± 7.5 11.0 -12.3 10.1 -11.2 4.4 -5.1 ± 0.6 1.1 1.3 3.7 -4.6 10.5
4 b 7.024 ± 8.4 11.1 -9.6 10.4 -9.1 4.1 -3.0 ± 1.9 0.9 0.8 3.1 -1.4 8.7
4 c 5.681 ± 9.3 12.7 -13.5 11.7 -12.4 4.9 -5.3 ± 2.1 1.4 1.3 3.7 -4.2 8.1
4 d 5.972 ± 9.5 11.5 -12.5 10.6 -11.4 4.4 -5.0 ± 2.0 0.7 2.6 2.4 -3.4 7.2

exclusive k⊥ jet algorithm

1 a 6.387 ± 11.1 18.1 -15.2 15.6 -13.1 9.2 -7.6 ± 3.6 3.9 5.0 5.5 -1.6 25.5
1 b 4.991 ± 10.3 15.0 -17.1 13.8 -15.5 5.8 -7.2 ± 0.8 0.5 2.5 4.9 -6.5 21.4
1 c 4.590 ± 10.3 16.9 -19.1 14.6 -16.5 8.5 -9.6 ± 6.4 1.9 2.6 4.3 -6.2 18.0
1 d 4.422 ± 10.8 17.8 -19.1 15.8 -17.0 8.2 -8.8 ± 5.4 1.1 1.1 5.7 -6.6 15.5
2 a 7.715 ± 7.6 13.0 -11.1 11.4 -9.8 6.1 -5.2 ± 1.0 3.6 1.9 4.2 -2.7 20.8
2 b 6.798 ± 8.0 12.8 -15.4 11.7 -13.8 5.3 -6.8 ± 3.1 0.6 0.5 3.9 -5.8 18.6
2 c 5.521 ± 9.1 12.1 -12.8 11.1 -11.8 4.7 -5.0 ± 2.0 0.9 2.3 3.1 -3.5 16.0
2 d 5.446 ± 9.8 19.4 -14.6 17.7 -13.4 7.9 -5.8 ± 1.8 0.8 1.5 7.4 -5.0 13.4
3 a 12.822 ± 6.0 12.4 -9.7 11.0 -8.5 5.6 -4.6 ± 1.0 2.6 1.6 4.3 -2.9 12.3
3 b 9.903 ± 7.3 14.0 -14.1 12.1 -12.1 7.2 -7.2 ± 5.0 1.0 1.7 4.5 -4.5 10.5
3 c 9.239 ± 7.8 14.3 -12.1 12.8 -10.8 6.3 -5.4 ± 3.0 1.4 1.4 5.0 -3.8 9.8
3 d 5.959 ± 9.8 13.7 -13.7 12.7 -12.7 5.2 -5.1 ± 1.4 1.7 2.5 3.7 -3.6 9.5
4 a 12.784 ± 6.2 10.7 -9.1 9.7 -8.3 4.5 -3.6 ± 0.7 0.8 0.8 4.1 -3.0 7.1
4 b 9.431 ± 7.3 9.5 -8.3 8.8 -7.8 3.4 -2.7 ± 1.3 1.4 0.3 2.4 -1.2 5.9
4 c 7.670 ± 8.3 11.0 -12.5 10.2 -11.5 4.1 -4.9 ± 0.6 1.7 0.8 3.2 -4.2 5.4
4 d 7.201 ± 8.6 11.0 -12.5 10.3 -11.4 4.0 -5.0 ± 0.3 0.8 2.0 3.0 -4.3 4.9

Cambridge jet algorithm

1 a 4.598 ± 13.6 19.8 -17.1 17.4 -15.0 9.5 -8.1 ± 4.6 2.7 5.7 5.3 -1.9 27.9
1 b 3.396 ± 12.8 21.0 -19.5 18.9 -17.3 9.2 -8.8 ± 6.0 0.5 2.7 6.2 -5.7 25.2
1 c 3.384 ± 12.8 22.5 -23.5 18.9 -19.8 12.3 -12.7 ± 11.0 1.1 2.2 4.7 -5.8 21.3
1 d 3.380 ± 13.0 18.8 -20.1 16.8 -17.9 8.5 -9.3 ± 6.7 1.5 2.0 4.3 -5.8 20.9
2 a 5.746 ± 9.0 15.1 -14.4 13.0 -12.3 7.8 -7.5 ± 4.9 3.4 3.0 3.8 -3.0 24.0
2 b 5.453 ± 9.4 14.3 -15.7 13.0 -14.1 6.1 -7.0 ± 2.8 2.3 1.9 4.2 -5.4 22.2
2 c 4.675 ± 10.4 15.3 -14.2 13.8 -12.9 6.5 -5.9 ± 3.1 1.0 2.8 4.7 -3.7 19.9
2 d 3.965 ± 11.7 20.5 -18.5 18.3 -16.4 9.4 -8.7 ± 6.1 2.7 1.8 6.2 -5.1 18.6
3 a 11.075 ± 6.7 12.0 -11.6 10.6 -10.2 5.7 -5.6 ± 0.5 3.8 1.4 3.6 -3.5 13.6
3 b 8.306 ± 8.1 14.2 -14.7 12.7 -13.2 6.4 -6.5 ± 1.7 1.4 2.8 5.1 -5.3 13.0
3 c 7.734 ± 8.9 13.3 -12.3 11.8 -10.9 6.0 -5.6 ± 4.3 1.8 1.3 3.2 -2.4 12.5
3 d 4.897 ± 11.0 13.9 -18.8 13.0 -17.3 4.8 -7.3 ± 2.3 0.4 2.3 3.0 -6.3 12.4
4 a 12.312 ± 6.5 9.4 -8.7 8.7 -8.1 3.6 -3.3 ± 0.8 0.8 0.5 3.1 -2.6 7.9
4 b 8.330 ± 7.9 10.3 -9.3 9.6 -8.7 3.8 -3.1 ± 0.5 1.9 0.5 2.7 -1.8 7.4
4 c 6.724 ± 8.9 11.9 -12.2 11.2 -11.3 4.1 -4.5 ± 1.2 1.2 0.6 3.3 -3.8 6.5
4 d 6.084 ± 9.6 13.2 -13.0 12.2 -12.0 5.0 -5.0 ± 1.6 0.6 2.1 3.9 -3.9 5.7
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�#$#? �	
 ��<
� ����� �
!���� d2σdijet/(dη
′ dET )

bin number corresponding ET range
1 8.5 < ET < 12GeV

2 12 < ET < 17GeV

3 17 < ET < 35GeV

letter corresponding η′ range
a 0.0 < η′ < 0.2

b 0.2 < η′ < 0.45

c 0.45 < η′ < 0.8

d 0.8 < η′ < 1.5

the dijet cross section d2σdijet/(dη
′ dET )

single contributions to correlated uncertainty
bin cross statistical total uncorrelated correlated model dep. positron positron LAr hadr. hadroniz.
No. section uncert. uncertainty uncertainty uncertainty detector corr. energy scale polar angle energy scale correct.

(in pb) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (percent)

inclusive k⊥ jet algorithm

1 a 11.854 ± 6.5 8.8 -9.4 8.1 -8.6 3.5 -3.8 ± 1.5 1.3 1.1 2.2 -2.6 6.6
1 b 15.894 ± 5.7 12.4 -12.8 10.1 -10.5 7.2 -7.4 ± 6.4 0.5 1.6 2.6 -3.1 6.9
1 c 17.329 ± 5.4 9.8 -8.4 8.7 -7.5 4.6 -3.7 ± 1.5 1.8 0.9 3.5 -2.2 6.4
1 d 18.605 ± 5.4 9.3 -11.3 8.2 -9.9 4.4 -5.4 ± 1.4 2.0 0.9 3.2 -4.5 8.3
2 a 8.399 ± 7.8 14.4 -11.5 13.0 -10.5 6.3 -4.6 ± 0.6 1.3 1.7 5.7 -3.8 5.4
2 b 9.423 ± 7.1 9.8 -10.3 9.1 -9.4 3.7 -4.1 ± 0.9 0.1 1.3 3.0 -3.4 4.6
2 c 9.421 ± 7.0 15.3 -18.9 12.1 -15.5 9.4 -10.8 ± 8.9 1.6 1.4 1.8 -5.5 2.6
2 d 7.632 ± 8.6 16.8 -15.9 15.0 -14.1 7.6 -7.2 ± 2.9 2.6 0.3 6.3 -5.9 4.3
3 a 5.166 ± 9.4 16.8 -17.6 14.3 -15.0 8.8 -9.1 ± 7.3 1.2 0.3 4.5 -5.1 4.2
3 b 5.534 ± 9.2 16.0 -15.0 14.5 -13.6 6.8 -6.4 ± 2.0 0.7 1.7 6.1 -5.6 3.4
3 c 6.390 ± 8.8 16.0 -12.4 14.2 -11.0 7.4 -5.6 ± 4.4 1.4 0.7 5.5 -2.7 4.2
3 d 2.779 ± 14.4 24.3 -23.9 21.8 -21.5 10.6 -10.5 ± 5.5 0.6 1.4 8.8 -8.6 5.1



D.1 Jet Cross Sections 229

the dijet cross section d2σdijet/(dη
′ dET )

single contributions to correlated uncertainty
bin cross statistical total uncorrelated correlated model dep. positron positron LAr hadr. hadroniz.
No. section uncert. uncertainty uncertainty uncertainty detector corr. energy scale polar angle energy scale correct.

(in pb) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (percent)

Aachen jet algorithm

1 a 11.678 ± 6.6 9.1 -9.2 8.2 -8.4 3.8 -3.8 ± 2.5 1.1 1.1 1.9 -1.9 9.7
1 b 15.227 ± 5.8 8.4 -12.3 7.1 -10.6 4.5 -6.1 ± 3.3 2.0 1.6 0.8 -4.2 9.8
1 c 16.716 ± 5.5 10.0 -8.3 8.9 -7.5 4.5 -3.6 ± 0.1 1.6 1.6 3.6 -2.4 9.7
1 d 17.958 ± 5.5 9.8 -9.8 8.7 -8.8 4.5 -4.3 ± 1.3 1.2 1.0 3.7 -3.5 12.8
2 a 7.741 ± 8.0 13.7 -12.5 12.2 -11.3 6.2 -5.3 ± 2.3 1.8 1.4 5.0 -3.9 8.8
2 b 8.986 ± 7.2 12.9 -10.3 11.8 -9.4 5.2 -4.0 ± 0.5 1.1 1.2 4.7 -3.3 8.8
2 c 9.391 ± 7.1 14.4 -16.6 11.5 -13.6 8.6 -9.4 ± 7.9 0.7 1.4 2.5 -4.7 7.1
2 d 6.814 ± 9.2 15.1 -12.2 13.6 -11.2 6.6 -4.9 ± 3.5 1.3 0.2 5.3 -2.9 10.0
3 a 5.085 ± 9.6 17.9 -17.5 15.5 -15.1 9.0 -8.9 ± 6.9 1.0 0.6 5.4 -5.2 7.8
3 b 5.309 ± 9.4 15.6 -14.1 14.0 -12.7 7.0 -6.1 ± 3.4 0.4 2.0 5.6 -4.4 7.0
3 c 6.290 ± 9.0 16.8 -15.2 14.8 -13.5 7.8 -7.1 ± 5.1 0.9 0.4 5.7 -4.7 7.5
3 d 2.491 ± 14.9 21.9 -26.0 20.0 -23.4 8.9 -11.4 ± 4.8 2.0 1.4 7.0 -9.9 10.6

exclusive k⊥ jet algorithm

1 a 9.032 ± 8.2 13.3 -10.8 12.2 -10.0 5.3 -4.2 ± 3.0 0.2 1.2 3.9 -2.3 10.9
1 b 10.995 ± 7.3 12.5 -12.2 10.5 -10.3 6.7 -6.7 ± 5.8 1.4 1.5 2.4 -2.2 12.5
1 c 11.991 ± 6.8 15.1 -11.9 12.7 -9.8 8.1 -6.7 ± 6.1 1.3 1.5 4.7 -1.2 12.7
1 d 10.190 ± 6.9 13.5 -14.5 11.7 -12.5 6.7 -7.3 ± 4.5 2.7 0.5 3.9 -4.8 15.9
2 a 9.223 ± 7.6 14.7 -11.8 13.0 -10.7 6.8 -5.1 ± 2.9 0.9 1.0 5.8 -3.6 8.2
2 b 9.834 ± 6.8 9.8 -10.9 8.8 -9.6 4.4 -5.2 ± 3.8 1.1 1.2 0.8 -2.9 6.9
2 c 10.784 ± 6.7 14.4 -16.1 11.8 -13.4 8.2 -8.9 ± 7.4 0.7 0.7 3.2 -4.6 5.6
2 d 9.153 ± 7.5 13.3 -13.1 11.9 -11.6 5.9 -5.9 ± 2.6 1.8 0.8 4.7 -4.7 7.7
3 a 5.941 ± 9.0 15.4 -17.6 13.4 -15.2 7.7 -8.8 ± 6.3 0.1 0.2 4.1 -5.9 8.2
3 b 5.768 ± 9.1 17.6 -13.6 15.7 -12.4 7.9 -5.6 ± 2.4 0.5 2.1 7.1 -4.3 8.7
3 c 6.769 ± 8.7 17.0 -14.0 14.9 -12.3 8.1 -6.6 ± 4.5 1.5 1.1 6.2 -4.1 7.5
3 d 3.224 ± 12.9 24.7 -20.7 22.3 -18.9 10.7 -8.4 ± 2.9 1.1 0.7 10.2 -7.7 11.4

Cambridge jet algorithm

1 a 7.686 ± 8.8 12.6 -11.9 11.4 -10.7 5.5 -5.2 ± 4.0 1.1 1.2 3.0 -2.4 10.7
1 b 9.601 ± 8.0 11.7 -10.9 10.2 -9.4 5.7 -5.4 ± 3.6 3.0 1.9 1.9 -0.8 13.3
1 c 9.748 ± 7.7 16.2 -12.6 14.0 -10.7 8.2 -6.7 ± 6.0 0.4 1.2 5.3 -2.3 18.3
1 d 7.618 ± 8.8 12.7 -12.6 11.7 -11.5 4.9 -5.2 ± 2.4 2.4 1.1 3.1 -3.5 30.7
2 a 7.522 ± 8.3 16.1 -11.3 14.4 -10.4 7.3 -4.6 ± 1.8 1.7 1.6 6.5 -3.1 6.8
2 b 8.744 ± 7.4 9.6 -16.9 8.5 -14.9 4.3 -7.9 ± 3.9 0.8 1.1 -0.1 -6.6 7.1
2 c 9.269 ± 7.6 19.3 -20.0 15.0 -15.6 12.2 -12.5 ± 11.9 1.3 0.7 2.0 -3.2 6.4
2 d 6.078 ± 9.9 18.4 -14.1 16.6 -12.9 8.1 -5.6 ± 1.7 2.0 1.5 7.3 -4.5 10.1
3 a 4.990 ± 10.1 18.1 -16.5 15.7 -14.3 8.9 -8.2 ± 6.8 1.3 0.7 5.4 -4.1 8.1
3 b 5.346 ± 9.6 18.2 -14.1 16.2 -12.6 8.4 -6.2 ± 2.9 0.9 3.0 7.1 -4.4 6.9
3 c 5.517 ± 9.6 17.8 -19.4 15.6 -17.1 8.5 -9.3 ± 5.4 1.0 0.9 6.3 -7.3 7.1
3 d 2.408 ± 15.7 21.1 -23.0 19.4 -21.1 8.2 -9.1 ± 3.5 4.0 1.6 5.8 -7.0 11.0
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�#$#$B �	
 ��<
� ����� �
!���� d2σdijet/(dη
′ dQ2)

bin number corresponding Q2 range
1 150 < Q2 < 200GeV2

2 200 < Q2 < 300GeV2

3 300 < Q2 < 600GeV2

4 600 < Q2 < 5000GeV2

letter corresponding range
a 0.0 < η′ < 0.2

b 0.2 < η′ < 0.4

b 0.4 < η′ < 0.6

c 0.6 < η′ < 0.9

d 0.9 < η′ < 1.5

the dijet cross section d2σdijet/(dη
′ dQ2)

single contributions to correlated uncertainty
bin cross statistical total uncorrelated correlated model dep. positron positron LAr hadr. hadroniz.
No. section uncert. uncertainty uncertainty uncertainty detector corr. energy scale polar angle energy scale correct.

(in pb) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (percent)

inclusive k⊥ jet algorithm

1 a 4.831 ± 10.4 16.2 -14.7 14.3 -12.9 7.7 -6.9 ± 5.2 1.3 3.1 4.3 -2.7 7.8
1 b 7.096 ± 9.2 13.3 -15.6 11.6 -13.7 6.6 -7.4 ± 3.6 0.7 4.4 2.9 -4.6 5.8
1 c 4.398 ± 11.1 28.9 -30.4 22.0 -23.6 18.7 -19.3 ± 18.3 1.3 2.5 2.6 -5.3 5.0
1 d 6.264 ± 9.5 13.9 -15.5 12.8 -14.3 5.2 -6.0 ± 1.2 0.4 1.6 4.6 -5.4 3.4
1 e 4.049 ± 11.8 15.9 -14.2 14.6 -13.2 6.2 -5.2 ± 3.1 1.9 2.5 4.2 -2.4 7.9
2 a 7.344 ± 7.8 11.9 -12.4 10.6 -11.0 5.5 -5.7 ± 3.7 1.8 0.9 3.1 -3.5 5.3
2 b 6.374 ± 8.4 14.3 -14.3 12.7 -12.7 6.7 -6.5 ± 4.2 1.2 1.5 4.6 -4.4 5.7
2 c 4.554 ± 9.5 14.6 -16.7 12.5 -14.4 7.6 -8.5 ± 6.6 2.4 1.4 2.0 -4.3 5.3
2 d 6.444 ± 8.4 12.1 -12.5 11.2 -11.5 4.7 -5.0 ± 1.2 1.1 0.9 4.1 -4.4 4.9
2 e 5.388 ± 10.2 16.3 -18.5 14.8 -16.6 7.0 -8.2 ± 3.1 0.9 1.5 5.8 -7.3 8.1
3 a 7.342 ± 8.2 11.2 -13.1 10.3 -12.0 4.3 -5.3 ± 0.1 0.4 2.2 3.4 -4.5 4.4
3 b 6.953 ± 8.3 12.0 -10.3 10.9 -9.5 4.9 -4.1 ± 0.4 1.9 2.3 3.6 -2.3 5.1
3 c 5.992 ± 8.8 12.7 -14.3 11.5 -13.1 5.4 -5.8 ± 0.5 1.2 3.1 3.9 -4.4 5.5
3 d 6.890 ± 8.3 13.3 -11.4 12.1 -10.5 5.4 -4.3 ± 1.1 0.4 1.9 4.7 -3.3 5.0
3 e 5.967 ± 9.4 13.2 -16.0 11.8 -14.1 6.1 -7.5 ± 5.3 0.8 1.0 2.3 -5.0 8.3
4 a 6.051 ± 9.3 14.3 -11.9 13.0 -11.1 5.9 -4.5 ± 0.9 2.7 0.9 4.9 -3.0 5.4
4 b 5.756 ± 9.0 12.7 -12.6 11.6 -11.4 5.3 -5.3 ± 3.8 0.4 1.5 3.0 -3.1 6.0
4 c 4.886 ± 10.0 12.7 -12.4 11.8 -11.6 4.5 -4.4 ± 2.7 0.9 1.3 2.9 -2.8 5.4
4 d 6.859 ± 9.0 14.7 -14.7 12.7 -12.7 7.5 -7.4 ± 6.0 2.2 1.0 3.5 -3.4 3.9
4 e 5.955 ± 9.9 16.7 -13.6 14.9 -12.4 7.5 -5.7 ± 2.9 2.0 1.9 6.1 -3.7 7.6
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the dijet cross section d2σdijet/(dη′ dQ2)

single contributions to correlated uncertainty
bin cross statistical total uncorrelated correlated model dep. positron positron LAr hadr. hadroniz.
No. section uncert. uncertainty uncertainty uncertainty detector corr. energy scale polar angle energy scale correct.

(in pb) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (percent)

Aachen jet algorithm

1 a 4.908 ± 10.4 13.3 -13.6 12.1 -12.4 5.4 -5.5 ± 3.9 0.4 2.3 2.6 -2.7 11.8
1 b 6.798 ± 9.4 12.2 -13.6 11.4 -12.5 4.5 -5.4 ± 0.7 1.0 2.7 3.0 -4.2 10.5
1 c 4.488 ± 11.1 26.7 -26.1 20.9 -20.4 16.5 -16.3 ± 15.4 0.7 3.1 4.8 -3.9 8.9
1 d 5.780 ± 9.8 14.2 -14.6 13.0 -13.5 5.5 -5.6 ± 0.4 0.9 2.1 4.8 -4.8 7.3
1 e 4.063 ± 11.9 19.9 -18.2 16.7 -15.2 10.7 -10.0 ± 8.7 2.5 3.5 4.3 -1.7 13.8
2 a 6.983 ± 8.0 14.0 -12.2 12.3 -10.7 6.7 -5.8 ± 4.8 1.5 0.5 4.1 -2.4 8.9
2 b 5.874 ± 8.7 12.2 -14.6 10.9 -13.0 5.5 -6.5 ± 2.7 2.2 2.5 3.1 -4.7 8.8
2 c 4.717 ± 9.4 14.0 -15.2 12.3 -13.4 6.7 -7.2 ± 3.6 3.5 2.4 3.5 -4.3 8.7
2 d 5.978 ± 8.8 10.6 -13.6 10.0 -12.4 3.4 -5.5 ± 0.0 1.8 0.9 2.4 -4.9 10.6
2 e 5.341 ± 10.1 18.1 -12.6 16.4 -11.8 7.7 -4.5 ± 0.1 0.6 2.3 7.2 -3.5 13.4
3 a 6.925 ± 8.3 13.2 -12.6 11.9 -11.4 5.7 -5.5 ± 1.6 1.9 2.2 4.3 -4.1 7.3
3 b 6.946 ± 8.4 9.9 -11.5 9.2 -10.6 3.5 -4.5 ± 1.1 0.4 2.1 2.0 -3.5 8.8
3 c 5.630 ± 9.0 13.9 -12.3 12.7 -11.3 5.7 -4.9 ± 1.8 0.6 2.7 4.4 -3.3 8.9
3 d 6.767 ± 8.6 13.8 -11.6 12.7 -10.9 5.4 -4.0 ± 0.4 0.7 0.9 5.0 -3.4 8.6
3 e 5.569 ± 9.8 14.5 -14.7 13.1 -13.4 6.1 -6.0 ± 4.0 1.1 1.0 4.1 -4.0 14.4
4 a 5.882 ± 9.4 12.3 -12.6 11.3 -11.7 4.7 -4.7 ± 1.7 1.5 2.0 3.3 -3.3 7.9
4 b 5.201 ± 9.6 12.3 -11.7 11.5 -10.9 4.4 -4.1 ± 2.0 0.5 1.6 3.1 -2.7 8.6
4 c 4.860 ± 10.0 14.9 -15.3 13.0 -13.3 7.2 -7.4 ± 6.0 1.7 0.7 3.1 -3.5 7.6
4 d 6.486 ± 9.2 15.2 -16.0 13.0 -13.7 8.0 -8.3 ± 6.1 2.3 2.6 3.5 -4.2 7.6
4 e 5.657 ± 10.1 13.9 -14.4 12.5 -12.9 6.1 -6.3 ± 3.3 3.7 0.6 3.0 -3.4 11.2

exclusive k⊥ jet algorithm

1 a 4.185 ± 12.3 22.4 -19.1 19.5 -16.5 11.1 -9.7 ± 8.1 2.2 2.6 6.6 -4.0 24.5
1 b 4.153 ± 12.0 14.0 -15.1 13.2 -14.1 4.7 -5.4 ± 2.9 0.7 3.0 1.7 -3.1 22.2
1 c 3.866 ± 12.1 21.0 -25.0 17.3 -21.1 11.9 -13.5 ± 9.4 3.6 4.6 4.2 -7.6 19.3
1 d 4.758 ± 11.1 20.7 -21.7 17.5 -18.4 11.2 -11.5 ± 9.0 2.3 2.3 5.6 -6.1 15.6
1 e 3.087 ± 12.6 20.7 -19.9 18.5 -17.8 9.3 -8.8 ± 4.7 4.1 1.3 6.6 -5.9 19.0
2 a 6.998 ± 8.5 15.0 -15.9 12.7 -13.5 8.0 -8.3 ± 6.4 2.1 2.2 3.6 -4.2 18.3
2 b 4.704 ± 9.8 15.0 -13.6 13.9 -12.6 5.8 -5.2 ± 1.1 2.4 1.2 4.8 -4.1 18.7
2 c 4.018 ± 10.4 13.5 -14.5 12.4 -13.3 5.3 -5.9 ± 3.9 1.7 1.4 2.5 -3.6 16.2
2 d 4.694 ± 9.8 16.3 -13.3 15.0 -12.4 6.4 -4.8 ± 1.9 2.0 0.6 5.5 -3.6 16.3
2 e 4.708 ± 9.9 15.4 -16.1 13.9 -14.5 6.5 -7.1 ± 2.1 3.0 1.5 5.0 -5.7 17.3
3 a 8.798 ± 7.9 13.3 -12.0 11.9 -10.7 5.9 -5.3 ± 2.4 1.9 2.1 4.3 -3.6 8.6
3 b 8.655 ± 8.0 10.6 -11.0 9.6 -9.9 4.4 -4.7 ± 0.3 1.6 2.7 2.7 -3.2 9.9
3 c 6.604 ± 8.6 14.0 -12.2 12.7 -11.0 6.1 -5.2 ± 3.5 1.6 1.6 4.2 -2.7 9.2
3 d 6.895 ± 8.4 12.0 -13.7 11.2 -12.5 4.2 -5.6 ± 1.6 1.5 1.4 2.9 -4.7 10.6
3 e 6.238 ± 8.7 20.2 -12.1 18.1 -10.9 9.0 -5.2 ± 2.1 3.1 1.7 7.8 -2.6 15.8
4 a 9.185 ± 7.7 10.1 -10.7 9.1 -9.7 4.3 -4.6 ± 1.6 1.1 2.4 2.6 -3.1 5.4
4 b 8.205 ± 7.8 11.2 -10.0 10.2 -9.0 4.8 -4.4 ± 3.0 2.2 1.2 2.2 -1.2 4.8
4 c 6.175 ± 9.0 13.1 -11.2 12.0 -10.5 5.2 -3.9 ± 2.6 1.4 0.6 4.0 -2.0 4.6
4 d 7.598 ± 8.3 16.6 -14.2 14.7 -12.3 7.9 -7.2 ± 5.8 1.4 0.9 4.9 -3.7 5.7
4 e 5.452 ± 9.6 11.5 -16.2 10.9 -14.8 3.8 -6.6 ± 1.8 2.3 0.7 1.9 -5.7 7.5

Cambridge jet algorithm

1 a 3.054 ± 14.5 26.5 -25.0 22.5 -20.9 14.1 -13.6 ± 11.8 3.7 2.5 6.2 -4.9 24.5
1 b 3.506 ± 13.4 17.0 -17.7 14.8 -15.4 8.3 -8.6 ± 4.4 2.3 6.4 1.0 -2.5 24.2
1 c 2.436 ± 15.7 33.3 -33.3 26.6 -26.6 20.0 -20.0 ± 18.9 2.7 2.2 5.4 -5.5 20.5
1 d 3.585 ± 13.6 28.5 -27.4 23.8 -22.4 15.7 -15.6 ± 13.3 4.2 3.2 6.4 -6.2 20.9
1 e 2.262 ± 16.7 27.2 -21.1 24.5 -19.5 11.8 -8.2 ± 2.1 1.4 5.4 10.1 -5.4 31.7
2 a 5.166 ± 9.8 14.7 -14.4 13.1 -12.7 6.8 -6.7 ± 5.3 1.5 1.2 3.5 -3.3 19.0
2 b 4.561 ± 10.4 16.1 -14.9 14.8 -13.8 6.3 -5.6 ± 2.5 0.2 0.8 5.6 -4.8 19.4
2 c 2.948 ± 12.3 15.4 -16.7 14.1 -15.3 6.2 -6.8 ± 5.5 0.5 1.3 1.9 -3.5 19.7
2 d 3.737 ± 11.3 18.1 -16.7 16.5 -15.2 7.6 -6.8 ± 4.0 0.9 1.5 6.0 -5.0 21.4
2 e 3.144 ± 13.7 24.3 -19.5 22.1 -17.9 10.1 -7.8 ± 0.0 4.8 0.3 8.8 -5.9 30.2
3 a 8.038 ± 8.4 14.6 -12.5 12.9 -11.1 6.9 -5.8 ± 2.2 2.8 2.7 5.0 -3.4 7.7
3 b 8.147 ± 8.5 12.1 -12.9 10.9 -11.6 5.2 -5.7 ± 2.4 2.7 2.2 2.7 -3.5 9.8
3 c 5.721 ± 9.5 15.6 -16.1 14.2 -14.8 6.3 -6.3 ± 2.1 1.8 2.1 5.1 -5.0 12.3
3 d 5.697 ± 9.6 11.3 -13.3 10.7 -12.3 3.6 -5.0 ± 0.5 2.3 1.3 2.0 -3.9 15.4
3 e 3.912 ± 11.3 14.8 -18.3 14.0 -16.7 4.8 -7.3 ± 0.5 2.1 0.6 4.0 -6.7 26.4
4 a 8.451 ± 8.0 10.9 -9.7 10.1 -9.1 4.1 -3.3 ± 1.7 0.6 1.1 3.2 -2.1 4.8
4 b 8.310 ± 7.8 9.8 -9.9 9.1 -9.2 3.6 -3.9 ± 2.1 1.9 0.8 1.6 -2.1 4.8
4 c 5.741 ± 9.4 12.8 -11.8 11.6 -10.8 5.3 -4.7 ± 3.7 0.5 1.5 3.2 -2.0 5.0
4 d 6.469 ± 9.2 15.1 -14.8 13.4 -13.1 6.9 -6.9 ± 5.2 0.5 0.7 4.3 -4.3 7.7
4 e 4.402 ± 11.4 13.7 -15.3 13.0 -14.3 4.3 -5.5 ± 1.9 0.9 1.3 3.2 -4.7 12.9
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�#$#$$ �	
 ��<
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!���� d2σdijet/(dηforwd,lab dQ
2)

bin number corresponding Q2 range
1 150 < Q2 < 200GeV2

2 200 < Q2 < 300GeV2

3 300 < Q2 < 600GeV2

4 600 < Q2 < 5000GeV2

letter corresponding ηforwd,lab range
a −1.0 < ηforwd,lab < 0.0

b 0.0 < ηforwd,lab < 1.0

c 1.0 < ηforwd,lab < 1.5

d 1.5 < ηforwd,lab < 2.0

e 2.0 < ηforwd,lab < 2.5

the dijet cross section d2σdijet/(dηforwd,lab dQ
2)

single contributions to correlated uncertainty
bin cross statistical total uncorrelated correlated model dep. positron positron LAr hadr. hadroniz.
No. section uncert. uncertainty uncertainty uncertainty detector corr. energy scale polar angle energy scale correct.

(in pb) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (percent)

inclusive k⊥ jet algorithm

1 a 0.127 ± 51.5 62.3 -62.9 60.7 -61.2 13.9 -14.6 ± 10.2 5.1 2.4 7.5 -8.7 84.5
1 b 9.963 ± 7.5 18.0 -18.8 14.4 -15.2 10.7 -11.0 ± 9.6 0.6 2.0 4.1 -4.7 12.0
1 c 8.073 ± 8.2 13.3 -15.2 11.1 -13.0 7.2 -8.0 ± 5.8 2.3 2.6 2.2 -4.0 -0.4
1 d 4.999 ± 10.7 13.6 -13.2 12.4 -12.1 5.6 -5.4 ± 0.6 1.8 3.9 3.3 -2.8 -0.8
1 e 3.842 ± 12.7 18.7 -15.1 17.4 -14.3 6.9 -4.6 ± 0.1 2.0 1.7 6.2 -3.5 -0.6
2 a 0.409 ± 32.1 37.0 -48.2 34.9 -44.5 12.3 -18.5 ± 8.1 7.4 3.0 4.5 -14.6 76.3
2 b 10.299 ± 6.9 12.6 -13.8 11.1 -12.1 6.0 -6.7 ± 4.2 1.1 0.3 3.8 -4.8 12.1
2 c 8.276 ± 7.0 11.3 -11.5 10.1 -10.2 5.1 -5.3 ± 3.3 0.7 0.5 3.5 -3.7 -0.2
2 d 6.311 ± 8.3 10.0 -11.8 9.3 -10.8 3.8 -4.7 ± 1.4 1.7 1.8 2.0 -3.4 -0.3
2 e 4.345 ± 10.5 16.8 -15.6 15.1 -14.0 7.5 -6.8 ± 2.7 2.9 2.1 5.8 -4.9 0.9
3 a 0.120 ± 60.3 75.7 -75.6 73.4 -73.4 18.4 -18.3 ± 17.1 3.6 5.1 2.6 -1.8 81.5
3 b 11.046 ± 7.2 10.7 -11.9 9.7 -10.9 4.5 -4.8 ± 0.9 1.4 1.4 3.6 -4.1 11.6
3 c 10.301 ± 6.7 11.8 -11.4 10.6 -10.2 5.2 -5.1 ± 0.6 0.9 2.4 4.1 -4.1 2.0
3 d 6.833 ± 7.9 13.3 -14.2 11.4 -12.2 6.9 -7.3 ± 5.8 1.2 0.5 3.0 -4.0 0.7
3 e 4.835 ± 9.8 13.8 -11.6 12.6 -10.8 5.7 -4.3 ± 2.1 1.0 2.6 4.2 -2.0 2.0
4 b 7.627 ± 8.9 14.7 -11.5 13.2 -10.5 6.3 -4.7 ± 2.6 2.6 0.9 4.8 -2.3 13.0
4 c 8.136 ± 7.7 11.1 -10.9 10.0 -9.7 4.9 -4.8 ± 3.5 1.3 0.4 2.8 -2.7 5.0
4 d 8.532 ± 7.6 11.5 -9.2 10.5 -8.7 4.5 -3.1 ± 0.5 0.3 1.4 3.9 -2.3 3.1
4 e 5.342 ± 9.8 14.9 -16.9 13.6 -15.2 6.2 -7.2 ± 0.9 1.8 2.2 5.3 -6.4 0.2



D.1 Jet Cross Sections 233

the dijet cross section d2σdijet/(dηforwd,lab dQ
2)

single contributions to correlated uncertainty
bin cross statistical total uncorrelated correlated model dep. positron positron LAr hadr. hadroniz.
No. section uncert. uncertainty uncertainty uncertainty detector corr. energy scale polar angle energy scale correct.

(in pb) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (percent)

Aachen jet algorithm

1 a 0.158 ± 46.6 51.4 -56.9 49.3 -54.0 14.4 -18.2 ± 12.0 3.6 5.1 4.9 -12.1 94.8
1 b 9.610 ± 7.7 14.6 -13.4 12.6 -11.5 7.5 -6.9 ± 5.3 1.0 1.8 4.6 -3.5 16.9
1 c 7.860 ± 8.4 14.1 -15.4 11.7 -12.9 8.0 -8.5 ± 6.7 2.4 2.6 2.0 -3.4 3.3
1 d 4.888 ± 10.6 14.6 -13.6 13.1 -12.2 6.6 -6.0 ± 1.3 2.8 4.0 4.0 -2.9 3.5
1 e 3.868 ± 12.9 22.8 -22.1 19.2 -18.6 12.3 -11.9 ± 10.8 2.5 0.9 5.0 -4.1 3.2
2 a 0.342 ± 34.8 39.9 -41.6 38.3 -40.1 11.0 -11.3 ± 1.8 5.3 3.3 8.7 -9.1 91.6
2 b 9.862 ± 7.0 13.6 -13.0 12.1 -11.5 6.3 -6.0 ± 3.6 1.0 0.3 4.8 -4.4 16.4
2 c 8.009 ± 7.1 10.0 -11.8 9.0 -10.7 4.2 -5.1 ± 2.6 0.5 0.9 2.7 -4.0 3.6
2 d 6.086 ± 8.5 11.2 -11.2 10.2 -10.1 4.7 -4.7 ± 3.3 1.5 1.3 2.3 -2.3 3.6
2 e 4.279 ± 10.6 13.6 -14.6 12.6 -13.4 5.2 -5.9 ± 2.7 2.5 1.5 3.1 -4.0 5.3
3 a 0.125 ± 60.4 63.8 -63.8 62.2 -62.2 14.2 -14.2 ± 12.1 3.4 4.8 4.3 -4.3 92.7
3 b 10.507 ± 7.3 10.4 -11.3 9.5 -10.4 4.1 -4.6 ± 1.1 1.0 1.3 3.3 -3.8 15.7
3 c 9.944 ± 6.9 11.4 -11.2 10.3 -10.1 4.9 -4.8 ± 1.0 1.1 2.1 3.9 -3.8 5.2
3 d 6.652 ± 8.1 13.9 -11.4 12.4 -10.2 6.2 -4.9 ± 3.2 1.4 1.5 4.6 -2.7 4.4
3 e 4.791 ± 10.1 15.1 -14.1 13.7 -12.8 6.4 -6.0 ± 3.2 1.0 2.5 4.6 -4.0 6.4
4 b 7.160 ± 9.1 11.7 -12.4 10.9 -11.5 4.2 -4.6 ± 0.7 2.0 0.6 3.2 -3.7 16.3
4 c 7.858 ± 7.8 11.8 -11.7 10.5 -10.4 5.4 -5.3 ± 3.8 1.2 0.7 3.2 -3.1 7.8
4 d 8.308 ± 7.7 11.6 -11.0 10.5 -9.9 5.0 -4.7 ± 3.0 0.4 1.1 3.4 -3.1 5.7
4 e 4.678 ± 10.4 13.5 -14.4 12.4 -13.2 5.4 -6.0 ± 2.5 2.0 2.6 3.2 -4.1 3.5

exclusive k⊥ jet algorithm

1 a 0.282 ± 35.8 42.9 -43.4 41.1 -41.4 12.1 -13.0 ± 1.0 5.0 7.1 8.3 -9.5 116.4
1 b 7.926 ± 9.1 19.4 -20.5 16.1 -17.0 10.9 -11.4 ± 9.4 1.0 1.1 5.0 -6.0 37.1
1 c 6.284 ± 9.6 17.7 -17.4 14.8 -14.6 9.7 -9.5 ± 8.1 1.0 2.3 4.4 -3.9 11.4
1 d 3.513 ± 12.5 17.5 -18.2 15.8 -16.5 7.5 -7.7 ± 3.6 1.7 3.7 4.9 -5.3 6.3
1 e 2.700 ± 13.7 19.1 -18.4 17.6 -17.0 7.4 -7.2 ± 3.1 1.6 3.1 5.5 -5.2 0.9
2 a 0.524 ± 28.7 39.1 -41.0 36.2 -37.8 14.9 -15.8 ± 2.9 8.0 5.7 10.7 -11.9 83.1
2 b 9.566 ± 7.4 13.3 -13.1 11.8 -11.6 6.1 -6.2 ± 3.8 2.0 0.6 4.0 -4.2 30.4
2 c 6.532 ± 8.1 11.5 -11.3 10.5 -10.3 4.7 -4.5 ± 2.2 0.9 1.4 3.5 -3.3 8.9
2 d 4.954 ± 9.3 12.5 -13.9 11.5 -12.6 5.1 -5.8 ± 2.5 2.0 1.5 3.3 -4.3 4.7
2 e 3.764 ± 10.7 21.4 -13.0 19.4 -12.2 8.9 -4.3 ± 2.2 1.9 0.5 8.3 -2.7 0.2
3 a 1.416 ± 22.4 36.5 -35.0 31.0 -29.8 19.3 -18.5 ± 13.6 9.3 7.2 6.8 -3.6 39.4
3 b 14.610 ± 6.4 11.2 -11.8 9.8 -10.3 5.5 -5.7 ± 2.9 2.5 1.1 3.4 -3.8 17.5
3 c 10.573 ± 6.7 11.6 -9.6 10.4 -8.5 5.1 -4.3 ± 0.6 1.4 2.5 3.8 -2.8 4.4
3 d 6.698 ± 8.1 15.6 -13.0 14.0 -11.7 6.9 -5.8 ± 2.9 2.6 1.1 5.4 -3.9 3.0
3 e 4.273 ± 10.0 19.5 -14.9 17.5 -13.5 8.5 -6.2 ± 1.1 2.9 1.8 7.6 -4.8 2.5
4 a 0.378 ± 38.1 48.5 -52.6 43.6 -47.1 21.2 -23.5 ± 21.0 2.9 0.3 0.3 -10.0 24.8
4 b 13.425 ± 6.7 9.9 -9.0 9.0 -8.3 4.1 -3.6 ± 0.0 2.2 0.9 3.0 -2.3 12.7
4 c 10.562 ± 6.8 10.1 -9.9 9.0 -8.8 4.6 -4.5 ± 3.4 1.0 0.5 2.5 -2.3 3.8
4 d 7.993 ± 7.7 12.1 -10.4 10.9 -9.5 5.2 -4.3 ± 2.6 1.0 1.0 4.0 -2.8 0.3
4 e 5.024 ± 9.7 16.4 -18.9 14.3 -16.4 8.2 -9.3 ± 3.6 4.0 3.1 5.2 -6.8 0.8

Cambridge jet algorithm

1 a 0.193 ± 52.4 62.1 -60.0 58.5 -56.7 20.9 -19.6 ± 15.9 6.8 6.4 9.6 -6.4 127.3
1 b 5.846 ± 10.5 20.0 -20.1 16.7 -16.8 10.9 -11.1 ± 9.7 0.8 0.7 4.5 -5.0 37.3
1 c 4.219 ± 12.0 20.8 -19.8 17.8 -16.8 10.7 -10.4 ± 9.0 1.8 2.2 4.7 -4.0 12.6
1 d 2.775 ± 14.9 21.8 -20.5 18.8 -17.8 11.0 -10.3 ± 3.7 2.8 7.9 5.9 -4.4 9.8
1 e 1.924 ± 19.0 28.4 -28.4 24.8 -24.8 13.7 -13.7 ± 11.4 1.3 3.7 6.4 -6.4 11.0
2 a 0.419 ± 31.1 44.5 -42.6 41.6 -40.1 15.8 -14.4 ± 5.4 3.5 5.5 13.3 -11.6 91.1
2 b 8.276 ± 8.1 14.9 -12.2 13.3 -10.9 6.7 -5.4 ± 1.5 3.5 0.7 5.3 -3.5 31.7
2 c 5.156 ± 9.2 13.7 -14.6 12.0 -12.8 6.5 -7.0 ± 5.4 0.3 1.7 2.8 -3.8 10.7
2 d 3.744 ± 11.0 16.5 -18.1 14.5 -15.9 7.9 -8.6 ± 5.3 2.6 3.2 3.7 -5.1 7.9
2 e 2.228 ± 15.8 24.1 -23.6 20.9 -20.4 12.0 -11.7 ± 11.0 0.9 1.3 4.4 -3.6 10.6
3 a 1.256 ± 22.6 39.4 -36.8 33.4 -31.1 20.8 -19.6 ± 16.7 6.9 5.6 8.6 -4.9 42.6
3 b 13.216 ± 6.8 11.5 -12.7 10.0 -11.1 5.6 -6.1 ± 3.1 3.0 1.1 3.0 -3.9 17.1
3 c 9.033 ± 7.5 11.3 -11.4 10.1 -10.3 4.9 -4.9 ± 0.5 1.2 2.7 3.6 -3.5 6.0
3 d 5.518 ± 9.3 14.5 -15.4 13.2 -13.9 6.0 -6.7 ± 2.7 1.6 1.4 4.7 -5.5 6.7
3 e 2.770 ± 13.7 19.0 -18.2 17.8 -16.9 6.6 -6.7 ± 1.9 1.1 2.7 5.4 -5.5 10.3
4 a 0.319 ± 38.2 50.8 -54.5 46.0 -49.2 21.5 -23.4 ± 21.0 2.7 0.3 -3.6 -9.9 22.7
4 b 12.335 ± 7.0 11.3 -9.5 10.2 -8.6 4.8 -3.9 ± 1.7 2.1 0.4 3.6 -2.4 12.4
4 c 10.500 ± 6.9 9.9 -9.8 8.9 -8.8 4.2 -4.2 ± 2.7 1.0 0.6 2.6 -2.6 4.5
4 d 6.895 ± 8.3 11.7 -11.0 10.7 -10.0 4.7 -4.4 ± 2.8 0.7 1.0 3.3 -2.8 2.2
4 e 3.665 ± 12.2 18.9 -19.2 16.4 -16.7 9.4 -9.5 ± 6.4 4.0 2.9 4.5 -4.8 4.0
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!���� d2σdijet/(dηbackwd,lab dQ
2)

bin number corresponding Q2 range
1 150 < Q2 < 200GeV2

2 200 < Q2 < 300GeV2

3 300 < Q2 < 600GeV2

4 600 < Q2 < 5000GeV2

letter corresponding ηbackwd,lab range
a −1.0 < ηbackwd,lab < −0.5

b −0.5 < ηbackwd,lab < 0.0

c 0.0 < ηbackwd,lab < 0.5

d 0.5 < ηbackwd,lab < 1.0

e 1.0 < ηbackwd,lab < 1.5

f 1.5 < ηbackwd,lab < 2.5

the dijet cross section d2σdijet/(dηbackwd,lab dQ
2)

single contributions to correlated uncertainty
bin cross statistical total uncorrelated correlated model dep. positron positron LAr hadr. hadroniz.
No. section uncert. uncertainty uncertainty uncertainty detector corr. energy scale polar angle energy scale correct.

(in pb) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (percent)

inclusive k⊥ jet algorithm
1 a 3.283 ± 13.2 23.9 -27.6 19.5 -23.2 13.8 -14.9 ± 13.4 1.4 1.3 2.6 -6.2 21.3
1 b 6.501 ± 8.8 18.3 -16.9 15.3 -14.1 9.9 -9.4 ± 8.0 1.4 2.5 4.9 -3.9 11.1
1 c 8.901 ± 8.1 11.4 -12.8 10.2 -11.5 4.9 -5.5 ± 3.3 0.5 1.5 2.9 -3.8 2.0
1 d 6.429 ± 9.8 14.9 -15.5 12.9 -13.5 7.4 -7.7 ± 2.2 3.4 4.4 4.0 -4.6 -5.1
1 e 1.496 ± 18.1 27.4 -27.9 23.7 -24.1 13.7 -14.2 ± 12.6 2.4 3.4 2.9 -4.6 -1.6
1 f 0.216 ± 43.1 49.6 -48.0 47.1 -45.8 15.7 -14.4 ± 11.2 8.8 0.0 6.2 0.0 9.0
2 a 3.766 ± 11.7 17.7 -19.6 15.7 -17.4 8.2 -9.2 ± 4.0 4.5 3.0 4.4 -6.0 17.6
2 b 7.312 ± 8.0 11.7 -12.6 10.9 -11.6 4.3 -5.0 ± 0.6 0.8 0.7 3.8 -4.6 11.8
2 c 9.606 ± 7.1 9.3 -10.5 8.7 -9.8 3.3 -4.0 ± 0.3 0.7 0.5 2.7 -3.5 2.4
2 d 6.251 ± 8.1 13.9 -15.8 11.9 -13.6 7.2 -8.0 ± 4.6 3.1 2.2 3.8 -5.2 -3.1
2 e 1.766 ± 13.5 18.6 -16.2 17.1 -15.2 7.1 -5.6 ± 3.9 1.8 1.9 5.1 -2.6 -1.2
2 f 0.918 ± 20.1 31.4 -35.3 26.3 -29.9 17.2 -18.6 ± 15.8 5.2 3.7 1.8 -7.3 3.9
3 a 4.021 ± 11.2 14.2 -15.8 13.4 -14.8 4.9 -5.7 ± 3.3 1.1 0.6 3.1 -4.3 15.7
3 b 6.756 ± 8.9 12.9 -13.4 11.6 -12.1 5.6 -5.8 ± 3.3 1.8 1.2 3.6 -3.9 10.9
3 c 11.914 ± 6.7 11.4 -11.1 10.2 -9.8 5.1 -5.1 ± 1.5 1.1 2.4 3.8 -3.8 3.9
3 d 7.407 ± 7.9 11.3 -10.8 10.4 -10.0 4.4 -4.1 ± 0.9 0.7 1.8 3.5 -3.2 -0.5
3 e 2.623 ± 11.5 15.6 -17.4 14.1 -15.7 6.7 -7.6 ± 3.9 3.3 2.1 3.5 -5.0 -2.6
3 f 0.624 ± 24.9 36.0 -30.8 32.4 -28.1 15.7 -12.6 ± 10.2 7.1 0.0 9.5 -1.4 9.6
4 a 1.944 ± 14.9 21.6 -21.3 19.0 -18.7 10.5 -10.3 ± 9.2 2.6 1.4 3.7 -3.3 9.4
4 b 3.741 ± 11.6 13.7 -13.4 12.9 -12.7 4.5 -4.2 ± 2.1 2.6 0.2 2.6 -2.1 10.1
4 c 9.303 ± 8.1 13.7 -12.3 11.9 -10.6 6.8 -6.1 ± 4.7 2.3 1.1 3.8 -2.5 6.3
4 d 9.213 ± 7.6 11.3 -10.3 10.5 -9.7 4.1 -3.6 ± 0.5 0.4 0.7 3.7 -3.1 3.7
4 e 4.754 ± 9.7 15.8 -13.5 14.2 -12.3 7.0 -5.7 ± 1.6 2.5 2.3 5.7 -3.9 1.8
4 f 0.755 ± 22.2 28.4 -30.6 25.9 -27.7 11.7 -13.0 ± 7.2 6.0 4.5 5.3 -7.7 2.0
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the dijet cross section d2σdijet/(dηbackwd,lab dQ
2)

single contributions to correlated uncertainty
bin cross statistical total uncorrelated correlated model dep. positron positron LAr hadr. hadroniz.
No. section uncert. uncertainty uncertainty uncertainty detector corr. energy scale polar angle energy scale correct.

(in pb) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (in percent) (percent)

Aachen jet algorithm
1 a 3.153 ± 13.4 22.1 -28.3 18.5 -24.3 12.2 -14.6 ± 10.8 3.0 3.5 3.1 -8.6 26.4
1 b 6.378 ± 9.0 16.8 -15.2 14.1 -12.7 9.1 -8.3 ± 7.3 0.9 2.3 4.5 -2.8 16.1
1 c 8.421 ± 8.3 11.9 -11.1 10.8 -10.2 4.9 -4.3 ± 2.4 0.9 1.7 3.5 -2.6 6.0
1 d 6.067 ± 9.9 15.3 -15.3 13.2 -13.2 7.7 -7.8 ± 2.7 3.9 4.4 3.8 -4.0 -1.7
1 e 1.765 ± 17.2 21.1 -22.3 19.3 -20.2 8.5 -9.3 ± 6.8 0.9 4.0 2.6 -4.6 2.9
1 f 0.356 ± 36.3 45.3 -43.0 42.0 -40.1 17.1 -15.5 ± 9.2 10.1 7.1 7.1 0.0 16.9
2 a 3.525 ± 12.0 19.7 -18.7 17.2 -16.4 9.6 -9.0 ± 4.0 5.0 4.0 5.7 -4.6 22.9
2 b 7.087 ± 8.1 12.6 -12.3 11.6 -11.3 5.0 -4.9 ± 1.3 1.3 1.0 4.3 -4.1 16.5
2 c 9.487 ± 7.2 10.0 -10.3 9.3 -9.6 3.6 -3.6 ± 0.0 0.4 0.5 3.2 -3.2 6.5
2 d 5.915 ± 8.3 13.6 -14.9 11.8 -12.9 6.6 -7.3 ± 3.9 2.9 2.3 3.7 -4.8 -0.1
2 e 1.752 ± 13.6 15.8 -16.4 14.9 -15.4 5.2 -5.7 ± 3.8 1.8 2.0 2.0 -2.9 1.7
2 f 0.807 ± 22.0 35.8 -39.9 29.7 -33.7 20.0 -21.5 ± 17.6 8.4 4.0 0.0 -7.9 8.1
3 a 3.747 ± 11.7 17.7 -15.3 16.4 -14.5 6.7 -5.0 ± 1.9 2.0 0.8 5.9 -3.9 21.6
3 b 6.762 ± 8.9 13.2 -12.9 11.8 -11.4 6.0 -5.8 ± 4.7 1.0 1.0 3.1 -2.8 15.5
3 c 11.638 ± 6.8 11.6 -11.3 10.2 -9.9 5.5 -5.5 ± 2.9 0.8 2.4 3.7 -3.6 7.2
3 d 6.935 ± 8.1 11.9 -11.2 10.8 -10.2 5.0 -4.6 ± 0.6 1.5 2.4 3.9 -3.3 2.6
3 e 2.765 ± 11.5 15.0 -17.8 13.9 -16.2 5.7 -7.3 ± 1.4 3.4 1.9 3.7 -5.8 0.7
3 f 0.411 ± 29.6 38.1 -32.7 36.1 -31.9 12.0 -7.2 ± 6.2 1.8 0.6 10.0 -2.8 13.3
4 a 1.737 ± 15.6 21.5 -21.6 19.2 -19.3 9.8 -9.8 ± 8.6 2.0 1.4 3.6 -3.7 11.5
4 b 3.591 ± 11.9 14.1 -14.4 13.2 -13.4 4.9 -5.1 ± 3.2 2.7 0.4 2.1 -2.5 14.5
4 c 8.616 ± 8.3 13.4 -12.9 11.6 -11.2 6.6 -6.4 ± 4.2 2.8 1.9 3.5 -3.1 9.1
4 d 8.926 ± 7.8 10.1 -10.5 9.5 -9.8 3.4 -3.6 ± 0.0 0.9 0.6 2.9 -3.1 6.9
4 e 4.669 ± 9.9 14.5 -14.4 13.2 -13.1 6.1 -6.1 ± 2.3 2.4 2.0 4.5 -4.4 3.5
4 f 0.571 ± 24.3 29.5 -31.9 27.0 -28.9 12.1 -13.5 ± 7.2 6.9 5.8 3.3 -6.8 4.1

exclusive k⊥ jet algorithm
1 a 2.826 ± 13.3 33.6 -30.8 28.3 -25.8 18.1 -16.8 ± 12.5 2.1 4.5 12.0 -9.9 46.5
1 b 4.896 ± 10.3 17.7 -18.3 15.2 -15.7 9.1 -9.4 ± 7.0 1.6 2.6 4.7 -5.2 31.3
1 c 7.286 ± 9.5 14.0 -13.5 12.9 -12.5 5.6 -5.2 ± 3.0 0.8 0.8 4.2 -3.7 17.1
1 d 4.313 ± 12.0 15.3 -17.7 13.6 -15.7 6.9 -8.1 ± 1.1 3.3 5.2 2.6 -5.0 1.0
1 e 1.121 ± 22.0 23.9 -25.9 22.9 -24.6 6.8 -8.2 ± 2.2 1.0 5.7 2.2 -5.1 -8.9
1 f 0.174 ± 48.2 62.7 -55.7 57.9 -51.6 24.1 -21.1 ± 10.4 6.0 16.7 12.5 -4.2 -8.9
2 a 3.564 ± 11.2 21.9 -17.9 19.8 -16.2 9.2 -7.6 ± 1.8 3.5 2.3 7.8 -5.9 39.3
2 b 6.546 ± 8.6 15.6 -13.7 14.0 -12.3 6.9 -5.9 ± 0.8 2.9 1.5 5.8 -4.6 29.4
2 c 8.084 ± 7.8 9.2 -11.9 8.7 -10.9 3.1 -4.6 ± 1.5 1.2 0.9 1.7 -3.8 13.0
2 d 5.040 ± 9.4 14.8 -11.8 13.5 -10.9 6.2 -4.7 ± 1.0 1.6 2.7 5.0 -3.0 -0.8
2 e 1.559 ± 15.0 18.7 -19.2 17.3 -17.8 7.0 -7.2 ± 3.2 4.2 2.6 3.4 -3.8 -8.8
2 f 0.480 ± 26.0 33.9 -35.2 30.6 -32.0 14.6 -14.8 ± 14.2 3.4 0.0 0.0 -2.4 -0.7
3 a 5.547 ± 9.7 16.6 -15.9 15.1 -14.5 6.9 -6.4 ± 2.4 2.0 1.6 5.8 -5.2 28.9
3 b 8.851 ± 7.9 11.6 -12.5 10.7 -11.4 4.5 -5.0 ± 0.3 2.3 0.4 3.5 -4.1 20.2
3 c 12.463 ± 6.5 14.3 -10.7 12.5 -9.2 7.0 -5.5 ± 3.2 1.7 2.3 5.3 -3.0 7.8
3 d 7.541 ± 8.0 13.4 -11.4 12.1 -10.2 5.7 -5.0 ± 2.3 2.2 2.2 4.0 -2.8 -4.1
3 e 3.062 ± 11.9 14.8 -15.5 13.8 -14.2 5.5 -6.1 ± 2.4 2.6 3.1 2.4 -3.6 -11.0
3 f 0.286 ± 35.6 42.7 -38.7 41.6 -38.3 9.4 -5.8 ± 1.2 2.9 0.0 8.7 -4.6 4.2
4 a 2.324 ± 13.5 16.8 -15.7 15.9 -15.1 5.4 -4.5 ± 0.7 1.8 1.5 4.6 -3.5 25.5
4 b 5.434 ± 9.5 14.4 -14.3 12.6 -12.5 6.9 -6.9 ± 5.9 1.0 0.9 3.1 -3.1 19.7
4 c 11.170 ± 7.1 10.6 -10.5 9.4 -9.3 4.8 -4.8 ± 2.5 2.3 1.1 2.8 -2.8 8.7
4 d 11.592 ± 6.8 9.0 -9.1 8.3 -8.5 3.4 -3.3 ± 1.2 1.3 0.6 2.4 -2.4 -1.9
4 e 5.858 ± 8.9 14.3 -11.1 13.1 -10.4 5.8 -3.7 ± 0.3 1.4 0.5 5.3 -3.0 -10.3
4 f 0.845 ± 21.0 28.4 -33.0 24.9 -28.9 13.6 -15.8 ± 7.5 9.2 5.9 2.6 -8.4 -9.7

Cambridge jet algorithm
1 a 1.948 ± 17.3 36.0 -31.2 31.4 -26.6 17.7 -16.3 ± 12.6 0.9 5.3 11.1 -8.7 57.8
1 b 3.530 ± 12.7 24.5 -25.9 20.1 -21.4 14.0 -14.6 ± 12.7 1.1 2.5 4.9 -6.5 36.0
1 c 4.813 ± 11.7 14.3 -14.7 13.4 -13.7 5.1 -5.5 ± 3.3 1.1 2.0 2.8 -3.5 19.9
1 d 3.618 ± 13.8 22.1 -17.8 19.7 -16.0 9.9 -7.9 ± 2.4 3.7 5.2 7.1 -3.7 1.8
1 e 0.916 ± 25.3 27.5 -27.5 26.2 -26.3 8.2 -8.2 ± 5.3 0.0 5.7 1.9 -1.9 -7.1
2 a 2.982 ± 13.0 25.3 -21.0 22.3 -18.3 12.0 -10.2 ± 7.2 4.7 0.9 8.2 -5.1 48.6
2 b 4.731 ± 10.4 15.8 -17.1 14.5 -15.6 6.4 -7.0 ± 0.2 3.0 1.4 5.3 -6.0 34.6
2 c 6.768 ± 8.8 12.1 -12.7 10.9 -11.4 5.2 -5.6 ± 3.5 1.0 2.0 2.8 -3.4 15.9
2 d 3.897 ± 11.0 17.3 -14.3 15.5 -12.9 7.6 -6.2 ± 5.2 0.3 1.5 5.1 -2.4 0.5
2 e 1.154 ± 18.0 21.8 -22.8 20.0 -20.8 8.5 -9.2 ± 6.0 3.0 4.3 2.7 -4.3 -4.8
2 f 0.263 ± 36.8 49.5 -54.4 44.3 -48.5 22.1 -24.6 ± 19.6 10.1 0.0 0.0 -10.7 1.3
3 a 5.000 ± 10.4 17.3 -18.7 15.2 -16.5 8.3 -8.7 ± 5.4 3.6 1.4 4.8 -5.3 33.0
3 b 7.634 ± 8.7 12.0 -12.6 11.0 -11.5 4.7 -5.1 ± 0.4 2.8 1.9 2.9 -3.6 23.2
3 c 10.210 ± 7.5 13.0 -13.8 11.6 -12.2 5.9 -6.4 ± 2.4 1.9 2.5 4.1 -4.8 9.3
3 d 6.679 ± 8.9 12.4 -12.6 11.4 -11.5 4.9 -5.0 ± 2.4 1.6 1.8 3.3 -3.4 -2.6
3 e 2.244 ± 14.2 22.8 -20.1 20.0 -17.4 10.9 -9.9 ± 6.4 5.5 3.9 5.4 -2.9 -10.1
3 f 0.203 ± 43.3 45.2 -47.6 44.7 -46.6 6.4 -9.8 ± 1.2 3.5 0.0 5.0 -9.0 4.5
4 a 2.384 ± 13.4 17.2 -16.1 16.3 -15.3 5.8 -4.8 ± 0.8 2.0 1.2 5.0 -3.9 27.3
4 b 4.425 ± 10.6 13.7 -13.5 12.6 -12.4 5.4 -5.4 ± 3.9 1.5 0.5 2.9 -2.9 21.4
4 c 10.212 ± 7.6 11.1 -11.0 10.0 -9.8 4.8 -4.9 ± 3.2 1.5 0.7 2.7 -2.9 10.1
4 d 10.833 ± 7.3 10.3 -9.4 9.5 -8.8 3.8 -3.4 ± 0.8 1.5 0.8 3.0 -2.5 -1.1
4 e 5.178 ± 9.6 12.0 -10.5 11.3 -10.2 3.9 -2.7 ± 1.2 0.6 0.3 3.3 -1.7 -10.2
4 f 0.709 ± 23.8 31.7 -35.1 28.6 -31.4 13.7 -15.6 ± 5.1 10.8 4.5 4.8 -8.8 -12.2



236 Tables of the Results

��� ���
��� 	) ��� &�� ����

the main αs(MZ) results from the inclusive
jet cross section using the inclusive k⊥ algorithm

μr = ET μr = Q

αs(MZ) = 0.1181 0.1221
total uncertainty +0.0061

−0.0058
+0.0074
−0.0070

experimental statistical uncertainty +0.0007
−0.0007

+0.0008
−0.0008

luminosity uncertainty +0.0010
−0.0010

+0.0011
−0.0011

positron energy +0.0004
−0.0004

+0.0004
−0.0004

LAr calo hadronic energy +0.0021
−0.0021

+0.0023
−0.0023

other exp. uncertainties +0.0017
−0.0017

+0.0019
−0.0019

theoretical hadronization corrections unc. +0.0028
−0.0030

+0.0030
−0.0032

μr dependence +0.0026
−0.0034

+0.0044
−0.0049

μf dependence +0.0007
−0.0005

+0.0010
−0.0012

parton density functions +0.0036
−0.0017

+0.0037
−0.0016

χ2/N.d.f. of fit 3.81 / 15 4.17 / 15

Table D.1: The main results of the αs fits in sections 9.1.2 and 9.1.3 for two different choices

of the renormalization scale. Shown is a detailed overview of all experimental and theoretical

contributions to the uncertainties of the fit results.

ET dependence of αs(ET ) (μr = ET )
inclusive jet cross section — inclusive k⊥ algorithm

average ET of data point:
√
70GeV

√
200GeV

√
500GeV

√
1500GeV

αs(ET ) = 0.1929 0.1619 0.1551 0.1458

total uncertainty +0.0164
−0.0133

+0.0152
−0.0131

+0.0161
−0.0152

+0.0296
−0.0266

exp. +0.0082
−0.0081

+0.0105
−0.0102

+0.0122
−0.0121

+0.0255
−0.0235

theor. +0.0105
−0.0097

+0.0082
−0.0076

+0.0092
−0.0082

+0.0095
−0.0104

pdf +0.0096
−0.0042

+0.0074
−0.0031

+0.0051
−0.0042

+0.0116
−0.0069

αs(MZ) = 0.1206 0.1165 0.1210 0.1256

total uncertainty +0.0059
−0.0055

+0.0075
−0.0070

+0.0094
−0.0095

+0.0215
−0.0196

exp. +0.0031
−0.0031

+0.0052
−0.0052

+0.0072
−0.0074

+0.0183
−0.0172

theor. +0.0036
−0.0041

+0.0038
−0.0043

+0.0053
−0.0054

+0.0077
−0.0066

pdf +0.0036
−0.0016

+0.0037
−0.0016

+0.0031
−0.0025

+0.0084
−0.0051

Table D.2: The αs results from the fits presented in section 9.1.2. Displayed are the fit

results of αs(ET ) at different ET (top) and the values extrapolated to μr = MZ (bottom).
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αs(MZ) from different jet definitions (μr = ET )

fit to d2σjet/dET dQ
2 measured from αs(MZ) exp. theor. PDF χ2/N.d.f.

incl. jet cross section – incl. k⊥ algo 0.1181 +0.0061
−0.0058 ±0.0030 +0.0039

−0.0046
+0.0036
−0.0017 3.81 / 15

incl. jet cross section – Aachen algo 0.1172 +0.0068
−0.0063 ±0.0032 +0.0046

−0.0052
+0.0037
−0.0016 5.45 / 15

dijet cross section – incl. k⊥ algo 0.1189 +0.0062
−0.0058

+0.0034
−0.0035

+0.0036
−0.0041

+0.0037
−0.0019 11.75 / 15

dijet cross section – Aachen algo 0.1174 +0.0068
−0.0065

+0.0031
−0.0033

+0.0046
−0.0052

+0.0037
−0.0018 13.45 / 15

dijet cross section – excl. k⊥ algo 0.1180 +0.0067
−0.0060 ±0.0040 +0.0038

−0.0042
+0.0038
−0.0015 4.20 / 15

dijet cross section – Cambridge algo 0.1136 +0.0067
−0.0057 ±0.0045 +0.0030

−0.0030
+0.0039
−0.0016 6.41 / 15

Table D.3: The αs results from the fits presented in sections 9.1.5 and 9.1.5.

αs(MZ) from different dijet variables using the inclusive k⊥ algorithm

μr = ET αs(MZ) exp. theor. pdf χ2/N.d.f.

d2σdijet/dETdQ
2 0.1189 +0.0062

−0.0058
+0.0034
−0.0035

+0.0036
−0.0041

+0.0037
−0.0019 11.75 / 15

d2σdijet/dMjjdQ
2 0.1190 +0.0062

−0.0058 ±0.0036 +0.0034
−0.0040

+0.0038
−0.0019 7.14 / 15

d2σdijet/dξdQ
2 0.1199 +0.0063

−0.0061
+0.0038
−0.0040

+0.0037
−0.0042

+0.0034
−0.0017 6.75 / 18

d2σdijet/dxpdQ
2 0.1218 +0.0063

−0.0058
+0.0039
−0.0040

+0.0031
−0.0035

+0.0038
−0.0022 5.89 / 15

d2σdijet/dxBjdQ
2 0.1188 +0.0063

−0.0061
+0.0042
−0.0044

+0.0036
−0.0040

+0.0029
−0.0013 4.37 / 15

d2σdijet/dydQ
2 0.1173 +0.0071

−0.0064
+0.0049
−0.0047

+0.0035
−0.0041

+0.0038
−0.0015 5.65 / 15

d2σdijet/dη
′dQ2 0.1193 +0.0057

−0.0062
+0.0045
−0.0043

+0.0037
−0.0042

+0.0034
−0.0013 10.96 / 19

d2σdijet/dη
′dET 0.1203 +0.0065

−0.0063 ±0.0037 +0.0040
−0.0047

+0.0035
−0.0019 3.59 / 11

Table D.4: The αs results from the fits presented in section 9.1.5 to different dijet distribu-

tions measured using the inclusive k⊥ algorithm.

The Gluon Density in the Proton at μf =
√
200GeV

parameterized by xG(x) = Axb (1− x)c (1 + dx) in 0.01 < x < 0.1

central result: A=0.4963 ; b = –0.593 ; c = 4.71 ; d = –0.553

log10(x) xG(x) = exp. theor. from Δαs(MZ)

-2.0 7.23 +1.40
−1.28

+0.93
−0.94

+0.77
−0.71

+0.70
−0.51

-1.9 6.22 +1.10
−1.01

+0.64
−0.65

+0.65
−0.63

+0.61
−0.45

-1.8 5.34 +0.87
−0.81

+0.45
−0.45

+0.51
−0.54

+0.52
−0.41

-1.7 4.55 +0.70
−0.65

+0.32
−0.32

+0.44
−0.46

+0.44
−0.33

-1.6 3.86 +0.58
−0.54

+0.26
−0.25

+0.36
−0.38

+0.38
−0.29

-1.5 3.25 +0.48
−0.45

+0.23
−0.21

+0.28
−0.31

+0.31
−0.25

-1.4 2.71 +0.41
−0.38

+0.21
−0.20

+0.22
−0.25

+0.27
−0.21

-1.3 2.24 +0.34
−0.31

+0.19
−0.18

+0.18
−0.19

+0.22
−0.17

-1.2 1.82 +0.28
−0.26

+0.17
−0.16

+0.13
−0.14

+0.18
−0.15

-1.1 1.44 +0.23
−0.22

+0.15
−0.14

+0.12
−0.11

+0.14
−0.13

-1.0 1.12 +0.20
−0.18

+0.13
−0.13

+0.08
−0.10

+0.12
−0.09

Table D.5: The gluon density in the proton from the fit in section 9.2.1. Displayed are the

results and the uncertainties of the gluon density xG(x) at eleven values of x in the interval

0.01 < x < 0.1. Also displayed are the parameters A, b, c, d of the central result.
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The Δ Quark Density in the Proton at μf =
√
200GeV

xΔ = x
∑

i e
2
i (qi + qi)

parameterized by xΔ(x) = Axb (1− x)c (1 + dx) in 0.01 < x < 0.1

central result: A=0.1587 ; b = –0.382 ; c = 3.58 ; d = 5.85

log10(x) xΔ(x) =

-2.0 0.942 +0.023
−0.023

-1.9 0.868 +0.019
−0.019

-1.8 0.799 +0.016
−0.016

-1.7 0.737 +0.014
−0.014

-1.6 0.680 +0.013
−0.013

-1.5 0.628 +0.012
−0.012

-1.4 0.580 +0.011
−0.011

-1.3 0.536 +0.010
−0.010

-1.2 0.495 +0.010
−0.010

-1.1 0.455 +0.0088
−0.0087

-1.0 0.416 +0.0084
−0.0083

Table D.6: The Δ quark density in the proton from the fit in section 9.2.1. Displayed

are the results and the uncertainties of the quark density xΔ(x) at eleven values of x in the

interval 0.01 < x < 0.1. Also displayed are the parameters A, b, c, d of the central result.

No. of standard deviations by which
the parameter is varied in the Fit
Fit of Fit of xG(x) Fit of αs(MZ),

source of correlated uncertainties αs(MZ) and xΔ(x) xG(x), xΔ(x)

experimental luminosity +0.025 –0.019 –0.021
model dependence of detector correction -0.323 +0.227 +0.216
positron energy +0.001 –0.172 –0.186
positron polar angle -0.030 +0.052 +0.063
LAr cluster energy -0.117 –0.399 –0.379
LAr noise — +0.714 +0.704
photoproduction background — –0.105 –0.118

theoretical renormalization scale (inclusive DIS) — –0.698 –0.754
renormalization scale (jets) +0.291 +0.253 +0.297
factorization scale (jets) +0.032 +0.274 +0.308
hadronization corrections –0.147 +0.120 +0.213

external αs(MZ) = 0.1190± 0.0040 (free) +0.0003 (free)

χ2/N.d.f. of fit 3.81 / 15 61.16 / 105 61.10 / 104

Table D.7: The values of the systematic parameters in the fits in sections 9.1.2, 9.2.1

and 9.3.1 in which the main results are obtained.
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First I wish to thank Hermann Küster who initiated this analysis by setting the goal of

a direct determination of the gluon density from jet cross sections. In many discussions I

profited very much from his extensive knowledge and intuition on this subject.

The theoretical foundation of the QCD analysis was developed in many valuable discus-

sions with Erwin Mirkes, Dieter Zeppenfeld, Mike Seymour and Björn Pötter who helped

me to understand the basics of perturbative QCD.

I wish to thank Fabian Zomer for helpful exchanges on the consistency of the QCD

analysis and on the proper use of statistical methods which had a big impact on the methods

and the results of this work.

I want to thank Beate Heinemann for her excellent work on the measurement of the

inclusive DIS cross section and for her help to make this knowledge available for my mea-

surement.

My room mates in 1d33 and my colleagues from the H1 group of our institute made

these years one the greatest pleasures of my life. Thank you very much Herbert Gräßler,
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